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Abstract

We numerically investigate tradeoffs between near-optimal base stock levels, numbers of kanbans, and planned

supply lead times in base stock policies and hybrid base stock/kanban policies with advance demand information used

for the control of multi-stage production/inventory systems. We report simulation-based computational experience

regarding such tradeoffs and the managerial insights behind them for single-stage and two-stage production/inventory

systems.
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1. Introduction

Recent developments in information technology
and the emphasis on supply chain system integra-
tion have significantly reduced the cost of obtain-
ing end-item advance demand information—
henceforth referred to as ADI—in the form of
actual orders, order commitments, forecasts, etc.,
and diffusing it among all stages of the system.
This has created opportunities for developing
effective production/inventory control policies
that exploit such information. The implementation
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of such policies may result in significant cost
savings in the entire system through inventory
reductions and improvements in customer service
(Bourland et al., 1996; Buzacott and Shanthiku-
mar, 1994; Chen, 2001; DeCroix and Mookerjee,
1997; Gallego and .Ozer, 2001; Gilbert and Ballou,
1999; G .ull .u, 1996; Hariharan and Zipkin, 1995;
Karaesmen et al., 2003, 2004; Milgrom and
Roberts, 1988; Van Donselaar et al., 2001;
Wijngaard, 2004).
In this paper, we investigate policies that use

ADI for production/inventory control of a multi-
stage serial system that produces a single type of
parts in a make-to-stock mode. We make the
following specific assumptions. Every stage in the
system consists of a facility, where unfinished parts
d.
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are processed, and an output store, where finished
parts are stored. Parts in the facility are referred to
as work-in-process (WIP), and parts in the output
store are referred to as finished goods (FG). FG of
the last stage are referred to as end-items. There is
an infinite supply of raw parts feeding the first
stage. Customer demands arrive randomly for one
end-item at a time, with a constant demand lead

time in advance of their due dates. Once a
customer demand arrives, it cannot be cancelled,
i.e. the ADI is assumed to be perfect. Demands
that cannot be satisfied on their due dates are
backordered and are referred to as backordered

demands (BD). The arrival of a customer demand
for an end-item triggers the placement of a
production order to replenish FG inventory at
every stage. FG inventory levels are followed
continuously at all stages, and replenishment
production orders may be placed at any time.
There is no setup cost or setup time for placing a
production order and no limit on the number of
orders that can be placed per unit time. Under the
above assumptions, there is no incentive to
replenish FG inventory by anything other than a
continuous review, one-for-one replenishment
policy. The model described above is simple but
captures some of the basic operational elements of
a serial, capacitated production/inventory system.
When there is no ADI, demand due dates

coincide with demand arrival times. In this case,
the replenishment production orders at every
stage, which are triggered by the arrival of
customer demands, may be placed only at or after
the demand due dates. The simplest production/
inventory control policy, in case there is no ADI, is
the base stock policy. The base stock policy was
originally developed for non-capacitated inventory
systems and is better suited for such systems (see,
e.g., Zipkin, 2000). In the base stock policy, a
production order to replenish FG inventory at
each stage is placed and authorized to be released
as soon as a customer demand arrives to the
system. A policy that has attracted considerable
attention and is particularly suited for a JIT
capacitated manufacturing environment is the
kanban policy (see, e.g., Buzacott and Shanthiku-
mar, 1993). In the kanban policy, a production
order to replenish FG inventory at a particular
stage is placed and authorized to be released only
when a finished part of this stage is consumed by
its downstream stage. In the case of a single-stage
system, the kanban policy is equivalent to a make-
to-stock CONWIP policy (Spearman et al., 1990).
Base stock and kanban policies may be combined
to form more sophisticated, hybrid, base stock/
kanban policies, such as the generalized kanban
policy (Buzacott, 1989; Buzacott and Shanthiku-
mar, 1993; Zipkin, 1989, 2000) and the extended
kanban policy (Dallery and Liberopoulos, 2000).
In the generalized kanban policy, a production
order to replenish FG inventory at a particular
stage is placed only when the inventory in this
stage is below a given inventory-cap level. In the
extended kanban policy, a production order to
replenish FG inventory at each stage is placed as
soon as customer demand arrives to the system;
however, it is authorized to be released into a
particular stage only when the inventory in this
stage is below a given inventory-cap level. A
detailed description of these and other policies can
be found in Liberopoulos and Tsikis (2003) and
Liberopoulos and Dallery (2000, 2003). There
exist several studies that analyze and compare
different production/inventory control policies in
the case where there is no ADI. Some of the
methods used for the performance evaluation and
comparison of these policies are stochastic order-
ing arguments (e.g., Spearman, 1992), dynamic
programming (e.g., Karaesmen and Dallery, 2000;
Veach and Wein, 1994), queuing theory (e.g.,
Rubio and Wein, 1996), approximate analysis
(e.g., Duri et al., 2000; Frein et al., 1995; Zipkin,
2000, Section 8.8.2), and simulation (e.g., Bonvik
et al., 1997).
When there is ADI, the production orders to

replenish FG inventory at every stage, which are
triggered by the arrival of a customer demand,
may be placed before the due date of the demand.
Base stock and hybrid base stock/kanban policies
can be easily modified to take advantage of ADI
by offsetting the due date of each demand by a
constant planned supply lead time at each parti-
cular stage in order to determine the time of
placing the resulting production replenishment
order at this stage, as is done in the time-phasing
step of the MRP procedure. The planned supply



ARTICLE IN PRESS

G. Liberopoulos, S. Koukoumialos / Int. J. Production Economics 96 (2005) 213–232 215
lead time of each stage is a fixed parameter of the
control policy, which, in an MRP system, is
typically set so as to guarantee that the actual
flow time (a random variable) of a part through
the facility of this stage falls within the planned
supply lead time a certain percentage of time (e.g.,
95% of the time) (Karaesmen et al., 2002). The
kanban policy cannot exploit ADI, because in the
kanban policy a production order is placed after a
part in FG inventory is consumed and therefore at
(or after) the due date of the demand that triggered
it. When ADI is available, it is therefore reason-
able to consider only base stock and hybrid base
stock/kanban policies and not pure kanban
policies. Hybrid base stock/kanban policies with
ADI are of particular interest because they fuse
together reorder-point policies, JIT, and MRP,
three widely practiced approaches for controlling
the flow of material in multi-stage production/
inventory systems.
The aim of our investigation in this paper is to

reveal tradeoffs between optimal base stock levels,
numbers of kanbans, and planned supply lead
times in multi-stage base stock and hybrid base
stock/kanban policies with ADI. Some of the
more specific issues that we will address are the
following.
In both base stock and hybrid base stock/

kanban policies with ADI, the base stock level of
FG inventory represents FG that have been
produced before any demands have arrived to
the system in order to satisfy the expected demand
during the supply lead time and protect the system
against possible stockouts. Intuitively, there
should be a tradeoff between the demand lead
time and the optimal base stock level of FG
inventory at each stage. Namely, as the demand
lead time increases, the optimal base stock level
should decrease or at least stay the same. But is
there a structure to this tradeoff? More specifi-
cally, does the optimal base stock level decrease
at a constant rate or at a diminishing rate, and if
so, until which point, as the demand lead time
increases? Do the optimal base stock levels at
different stages all decrease at the same time until
they drop to zero or to some constant level, or do
they decrease one after the other in a certain order
as the demand lead time increases? If the latter is
true, as the demand lead time increases, is it more
beneficial to first lower the base stock level of
upstream stages, where FG inventory is usually
less expensive to hold but also less important with
respect to customer service, or of downstream
stages, where FG inventory is usually more
expensive to hold but also more important with
respect to customer service?
The planned supply lead times are control

parameters that determine how much (if any) to
delay the placement of production replenishment
orders that are triggered by the arrival of customer
demands. Intuitively, if the demand lead time is
short, the placement of production replenishment
orders should not be delayed, whereas if the
demand lead time is long, the placement of
production replenishment orders should be de-
layed. But what is the maximum critical demand
lead time below which the placement of produc-
tion replenishment orders should not be delayed?
Does it make sense to delay the placement of
production replenishment orders and at the same
time have positive base stock levels at some stages?
In hybrid base stock/kanban policies, the

number of kanbans at each stage sets an inven-
tory-cap and determines the production capacity
of this stage. Intuitively, there should be a tradeoff
between the number of kanbans and the base stock
level at each stage. Namely, as the number of
kanbans decreases, the production capacity should
decrease, the production replenishment time
should increase, and consequently the base stock
level of FG inventory should also increase. But
what is the optimal number of kanbans and
therefore the optimal base stock level, and how
are they affected by the demand lead time? More
specifically, as the demand lead time increases,
should the optimal number of kanbans decrease,
and if so, by how much?
Since exact analytical tools for evaluating the

performance of multi-stage base stock and hybrid
base stock/kanban policies with ADI are limited
and approximation-based analytical tools may
yield fairly accurate but systematically biased
results, which may be misleading when trying to
reveal tradeoffs between parameters, we use
simulation and brute-force optimization to inves-
tigate such tradeoffs and report the results of this
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investigation for single-stage and two-stage sys-
tems. The main contribution of this paper is the
managerial insights that these results bring to
light.
The rest of the paper is organized as follows. In

Sections 2 and 3, we numerically investigate single-
stage base stock and hybrid base stock/kanban
policies, respectively. In Sections 4 and 5, we
numerically investigate two-stage base stock and
hybrid base stock/kanban policies, respectively.
Finally, in Section 6, we draw conclusions.
FG(S) 
parts to 

customers 

customer 
demands

raw parts(∞) 

BD(0) 

WIP(0)

OH(0) 

T max(0, T – L) ordersdelay

Fig. 1. Single-stage base stock policy with ADI.
2. Single-stage base stock policy with ADI

In this section, we consider a single-stage base
stock policy with ADI, similar to the system
considered in Karaesmen et al. (2002). Customer
demands arrive for one end-item at a time
according to a Poisson process with rate l; with
a constant demand lead time, T ; in advance of
their due dates. The arrival of every customer
demand eventually triggers the consumption of an
end-item from FG inventory and the placement of
a production order to the facility of the sole stage
to replenish FG inventory. More specifically, the
consumption of an end-item from FG inventory is
triggered T time units after the arrival time of the
demand. If no end-items are available at that time,
the demand is backordered.
The control policy depends on two design

parameters, namely, the target or base stock level
of end-items in FG inventory, denoted by S; and
the stage planned supply lead time, denoted by L:
We should point out that we use the word ‘‘base
stock’’ for terminological simplicity but with
caution, because in the presence of ADI, the
inventory position can actually exceed the base
stock level. In fact, Hariharan and Zipkin (1995)
and Chen (2001) use the term ‘‘order base stock’’
instead of ‘‘base stock’’ to describe the target FG
inventory in the presence of ADI. The stage
planned supply lead time L has the same meaning
as the fixed lead time parameter in an MRP
system.
Initially, the system starts with a base stock of S

end-items in FG inventory. The time of placing the
replenishment production order triggered by the
arrival of a demand is determined by offsetting the
demand due date by the stage planned supply lead
time, L; as is done in the time-phasing step of the
MRP procedure. This means that the order is
placed immediately, i.e. with no delay, if LXT (in
this case, the order is already late), or with a delay
equal to T � L with respect to the demand arrival
time, if LoT : In other words, the delay in placing
an order is equal to max(0, T � L). When the
order is placed, a new part is immediately released
into the facility. If there is no ADI, i.e. if T ¼ 0;
both the consumption of an end-item from FG
inventory and the replenishment production order
are triggered at the demand arrival time, and the
resulting policy is the classical base stock policy. A
queuing network model of the base stock policy
with ADI is shown in Fig. 1.
The symbolism used in Fig. 1 (and all other

similar figures that follow in the rest of the paper)
is the same as that used in Dallery and Libero-
poulos (2000), Duri et al. (2000), Karaesmen et al.
(2002), Frein et al. (1995), Liberopoulos and Tsikis
(2003), and Liberopoulos and Dallery (2000, 2003)
and has the following interpretation. The oval
represents the facility, and the circles represent
constant time delays. The queues followed by
vertical bars represent synchronization stations.
A synchronization station is a server with zero
service time that instantaneously serves customers
as soon as there is at least one customer in each of
the queues that it synchronizes. Queues are labeled
according to their content, and their initial value is
indicated inside a parenthesis. Queue OH stands
for replenishment orders on hold. In the single-
stage base stock policy, this queue is always equal
to zero, because of the assumption that there is an
infinite number of raw parts. Recall that BD
stands for backordered demands.
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We consider a classical optimization problem
whose objective is to find the values of S and L

that minimize the long-run expected average cost
of holding and backordering inventory,

CðS;LÞ ¼ hE½WIPþ FGðS;LÞ� þ bE½BDðS;LÞ�;

ð1Þ

where h is the unit cost of holding WIP+FG
inventory per unit time and b is the unit cost of
backordering FG inventory per unit time. Here, we
are more interested in the effect of ADI on
inventory holding and backordering costs than on
the cost of ADI itself, so we assume that there is no
cost of obtaining ADI. The effect of buying ADI is
considered in Karaesmen et al. (2003). It is not
difficult to see that control parameters S and L

affect only the expected average FG and BD and
not the expected average WIP. We explicitly express
these dependencies in the cost function (1). In what
follows, we will study the above optimization
problem, first for the case where there is no ADI
and then for the case where there is ADI.

2.1. The case where there is no ADI

If there is no ADI, i.e. if T ¼ 0; the planned
supply lead time L is irrelevant, because a
replenishment order is always placed immediately
upon the arrival of a customer demand. After
some algebraic manipulations, the long-run ex-
pected average cost (1) can be expressed as a
function of S as follows:

CðSÞ ¼ ðh þ bÞ E½WIP� �
XS

n¼0

nPðWIP ¼ nÞ

(

þ S½PðWIPpSÞ � b=ðb þ hÞ�

)
: ð2Þ

Moreover, the optimal base stock level, S�; is
given by the well-known critical fraction rule of
the newsvendor problem, i.e. it is the smallest
integer that satisfies (see Rubio and Wein, 1996)

PðWIPpS�ÞXb=ðb þ hÞ: ð3Þ

If the facility consists of a single-server station
with exponential service rate m; the long-run
expected average cost (excluding the cost of WIP,
which is equal to hr=ð1� rÞ and is therefore
independent of the design parameters S and L) is
given by (see Buzacott and Shanthikumar, 1993,
Section 4.3.1; Rubio and Wein, 1996)

CðSÞ ¼ h½S � rð1� rSÞ=ð1� rÞ� þ b½rSþ1=ð1� rÞ�;

where r ¼ l=m: In this case, S�¼ I #Sm; where
#S¼ ln½h=ðh þ bÞ�=ln r and Ixm denotes the largest
integer which is smaller than or equal to x:
If the facility consists of a Jackson network of

servers, S� satisfies a non-closed-form expression
that can be solved numerically. For instance, in the
case of a balanced Jackson network consisting of
M identical single-server stations, each server
having an exponential service rate m; S� is the
smallest integer that satisfies (3), where the WIP
has a negative binomial steady-state distribution
given by (see Rubio and Wein, 1996)

PðWIP ¼ nÞ ¼
M þ n � 1

n

� �
ð1� rÞMrn; ð4Þ

where r ¼ l=m:

2.2. The case where there is ADI

If there is ADI, i.e. if T > 0; there is a time lag
between placing an order and demanding an end-
item from FG inventory. This time lag is equal to
T�maxð0;T � LÞ ¼ minðT ;LÞ (see Fig. 1). This
implies that any system with demand lead time
T > L behaves exactly like a system with demand
lead time T ¼ L:

2.2.1. The case of a single-server exponential

station

If the facility consists of a single-server station
with exponential service rate m; the long-run
expected average cost (excluding the cost of WIP,
which is equal to hr=ð1� rÞ) is given by (see
Buzacott and Shanthikumar, 1993, Section 4.5.2;
Buzacott and Shanthikumar, 1994; Karaesmen
et al., 2004)

CðS;LÞ ¼ h½S þ lminðL;TÞ � r=ð1� rÞ�

þ ðh þ bÞ½rSþ1=ð1� rÞ�e�mð1�rÞ minðL;TÞ;

where r ¼ l=m: One can optimize C(S,L) with
respect to parameters S and L to gain insight into
the behavior of the system under the optimal
parameters. Specifically, it is shown in Karaesmen
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et al. (2004) that for a fixed L, the optimal-based
stock level, S�ðLÞ; is given by

S�ðLÞ ¼
#SðLÞ

� �
if LpL�;

0 if LXL�;

(

where

#SðLÞ ¼ ln½ðh þ bÞ=h�=ln rÞ � ½ðm� lÞ=ln r�L

and the optimal planned supply lead time, L�; is
given by

L�¼ ln½ðh þ bÞ=h�=ðm� lÞ:

The overall optimal base stock, S� ¼ S�ðL�Þ; is
then equal to the integer I #Sm; where
#S¼ maxf0; ln½ðh þ bÞ=h�=ln r� ½ðm� lÞ=ln r�Tg:

The above analysis implies that L� is indepen-
dent of T and is equal to cE½W �; where W is
the waiting (or flow) time of a part in the facility
if the system were operated in make-to-order
mode (recall that for an M=M=1 queue, E½W � ¼
1=ðm� lÞ), and c is a factor equal to ln½ðh þ bÞ=h�:
#S and consequently S�; on the other hand, are
functions of T : More specifically, #S decreases
linearly with T and reaches zero at T ¼ L�: Thus,
for demand lead times T ; such that ToL�, #S > 0
and production orders are placed upon the arrival
of demands with no delay. For demand lead times
T ; such that T > L�; however, #S ¼ 0 and produc-
tion orders are placed upon the arrival of demands
with a delay of T � L�: This means that for
T > L�; the optimal operation mode of the
system switches from ‘‘make-to-stock’’ to ‘‘make-
to-order’’. The minimum long-run expected aver-
age cost CðS�;L�Þ decreases with T and attains its
minimum value at T ¼ L�: Since L� is the smallest
value of T for which #S ¼ 0; and S� ¼ I #Sm; it
follows that the smallest value of T for which
S� ¼ 0; is slightly smaller than L�:

2.2.2. The case of a Jackson network of servers

If the facility consists of a Jackson network of
servers, there are no general analytical results
available for the optimal parameter values. Intui-
tively, we would expect that as T increases, the
optimal base stock level should decrease, as is the
case with the single-server station. The question is
how exactly does it decrease? Does it decrease
linearly until it drops to zero, as in the case of a
single-server station, or does it decrease in some
sort of non-linear way (e.g., in a diminishing way)?
What is the smallest value of T ; for which the
optimal base stock level becomes zero, indicating a
switch in the optimal operation mode of the
system switches from make-to-stock to make-to-
order? Is it equal to the average flow time of a
part through the facility multiplied by the factor
c ¼ ln½ðh þ bÞ=h�; as in the case of a single-server
station?
The only general analytical result related to the

latter question is Proposition 1 in Karaesmen et al.
(2004). That proposition states that if a supply
system operates in a make-to-order mode (i.e.,
with zero base stock level) and satisfies Assump-
tion 1, given below, then the optimal planned
supply lead time, L�; is the smallest real number
that satisfies

PðWpL�ÞXb=ðb þ hÞ; ð5Þ

where W is the order replenishment time, i.e. the
waiting or flow time of a part in the facility.

Assumption 1. All replenishment orders enter the
supply system one at the time, remain in the
system until they are fulfilled (there is no blocking,
balking or reneging), leave one at a time in the
order of arrival (FIFO) and do not affect the flow
time of previous replenishment orders (lack of
anticipation).

The implication of the above result is that if the
system in Fig. 1 satisfies Assumption 1, then when
TXL�; where L� is given by (5), the optimal
operation mode of the system switches from make-
to-stock to make-to-order with optimal planned
supply lead time L�: Notice the similarity between
expressions (3) and (5). These two expressions
demonstrate explicitly the interchangeability of
safety stock, which is related to the base stock
level, and safety time, which is related to the
planned supply lead time.
To summarize, when T ¼ 0; S� is given by (3),

and when TXL�; S� ¼ 0: A question that remains
unanswered is what happens when 0oToL�?
To shed some light into this issue, we numerically
investigated a particular but representative instance
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of the system, in which the facility consists of a
Jackson network of four identical single-server
stations in series, each server having a mean
service time 1=m: Thus, the system instance that
we considered satisfies Assumption 1. For this
instance, we considered four sets of system
parameter values shown in Table 1. In cases 1
and 2, the service time distribution of each
machine is exponential, whereas in cases 3 and 4,
it is Erlang with two phases. The optimal control
parameter values for the four cases are as follows.
For T ¼ 0; L is irrelevant, and S� can be

determined from (3). In cases 1 and 2, PðWIP ¼nÞ
can be computed analytically from (4) for M ¼ 4:
S� can then be substituted into (2) to determine
CðS�Þ: The results are: S� ¼ 8 and CðS�Þ ¼
90:8954; for case 1, and S� ¼ 68 and CðS�Þ ¼
83:6966; for case 2. In cases 3 and 4, the optimal
base stock level S� was obtained by evaluating the
cost for different values of S using simulation and
picking the value that yielded the lowest cost. The
results are: S� ¼ 4 and CðS�Þ ¼ 48:07865; for case
3, and S� ¼ 34 and CðS�Þ ¼ 42:83576; for case 4.
We should point out that when we refer to

simulation-based results, we use the word ‘‘opti-
mal’’ for terminological simplicity but with cau-
tion, because we did not actually perform a
significance test on the sign of the cost difference
between two systems having different values of S:
Using the wording ‘‘near-optimal’’ instead of
‘‘optimal’’ to describe the simulation-based results
would be more accurate, but might make the text
heavier. Before discussing the simulation-based
results, let us first say a few words about the
simulation experiments.
For this and for all the other examples that

follow in the rest of the paper we ran a total of
roughly 8000 simulation experiments using the
Table 1

Parameter values for cases 1–4 of the single-stage base stock

policy with ADI

Case 1=l Service time distribution 1=m r ¼ l=m h b

1 1.25 Exponential 1.0 0.8 5 1

2 1.1 Exponential 1.0 0.90909y 1 9

3 1.25 Erlang-2 1.0 0.8 5 1

4 1.1 Erlang-2 1.0 0.90909y 1 9
simulation software Arena. In each experiment, we
used a simulation run length of 60 million time
units. This yielded 95% confidence intervals on the
estimated values of E[WIP], E[FG], and E[BD]
with half-width values of less than 0.5% of their
respective estimated values, in the cases of E[WIP]
and E[FG], and less than 4%, in the case of E[BD].
The simulation-based results are discussed next.
In all cases, the optimal planned supply lead

time L� can be determined from (5). In cases 1 and
2, it is well-known that the distribution of the
order replenishment time W is Erlang with M

phases and mean M=ðm� lÞ; so it can be
computed analytically. This is because W is the
sum of M i.i.d. M=M=1-system waiting times,
each time having an exponential distribution with
mean 1=ðm� lÞ: Specifically, the cumulative dis-
tribution of W is given by

PðWpwÞ ¼ 1�
XM�1

k¼0

½ðm� lÞw�k

k!
e�ðm�lÞw:

Substituting the above expression into (5) yields
L� ¼ 10:6396 and 73.4886, for cases 1 and 2,
respectively. Incidentally, a quick computation of
cE[W] yields ln[(5+1)/5]/[4/(1�0.8)]=3.6464 in
case 1 and ln[(1+9)/1]/[4/(1�0.90909)]=101.3137
in case 2. Therefore, in either case, L�acE½W �
(recall that in the case of a single-server exponen-
tial station, L� ¼ cE½W �). In fact, in case 1, L�

(=10.6396)>cE[W] (=3.6464), whereas in case 2,
L� (=73.4886)ocE[W] (=101.3137). Therefore,
the fact that for the single-server exponential
server case, L� ¼ cE½W �; does not hold in general.
In cases 3 and 4, L� was obtained by evaluating
the cost for different integer values of L using
simulation and picking the value that yielded the
lowest cost. The result is L� ¼ 6 and 35 for the two
cases, respectively.
For values of T in the interval (0, L�), we used

simulation to evaluate the cost of the system for
the four sets of parameter values. In each case, we
optimized the control parameter S for different
values of T ; using exhaustive search. In this paper,
we only present the optimal results due to space
considerations. For all four sets of parameter
values shown in Table 1, the optimization yielded
the following general results.
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As T increases from zero, the optimal base stock
level S� appears to decrease linearly with T and
reaches zero just below T ¼ L�; as in the case of
the single-server station. The insight behind this
behavior is that there appears to be a linear
tradeoff between S� and T and that L� is just
above the smallest value of T for which S� is equal
to zero. The results are shown in Table 2 for the
four cases. Plots of S� versus T are shown in Fig. 2
for the four cases.
From Fig. 2, it can be seen that the smallest

values of T for which S� ¼ 0 are approximately
equal to 10, 73, 6, and 35, for cases 1–4,
Table 2

S� and CðS�;L�Þ versus T, for L ¼ L�; for the single-stage base sto

Case 1 Case 2

T S� CðS�;L�Þ T S� CðS�;L�Þ

0 8 90.8954 0 68 83.6966

2 6 90.5209 10 59 83.3837

4 5 90.3351 20 50 83.0256

6 3 90.0959 30 40 82.7439

8 2 89.9054 40 31 82.3999

10 0 89.6463 50 22 82.1246

N 0 89.6463 60 12 81.8376

73 0 81.6226

N 0 81.6226

0

2

4

6

8

10
Case 1

Case 3
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Fig. 2. S� versus T ; for L ¼ L�; for the sin
respectively. We use the word ‘‘approximately’’
because we only examined integer values of T ;
whereas T really is a continuous parameter.
Recall, that for cases 1 and 2, the analytically
obtained optimal planned supply lead times L� are
10.6396 and 73.4886, respectively. As in the case of
the single-server station, the optimal planned
supply lead times, L�; are independent of T :
From Table 2, it can be seen that the minimum

long-run expected average cost CðS�;L�Þ de-
creases very little with T and attains its minimum
value at T ¼ L�: The drop in CðS�;L�Þ between
the situations where T ¼ 0 and T ¼ L� is only
ck policy with ADI

Case 3 Case 4

T S� CðS�;L�Þ T S� CðS�;L�Þ

0 4 48.0787 0 34 42.8358

2 3 47.6811 10 24 42.3458

4 1 47.2363 20 16 41.6722

6 0 46.8434 30 5 41.3582

N 0 46.8434 35 0 41.1147

N 0 41.1147
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1.37%, 2.48%, 2.29%, and 4.50%, for cases 1–4,
respectively. This insensitivity of the long-run
expected average cost (1) with respect to the
demand lead time T is to a certain extent due to
the fact that a significant part of this cost is due to
the term hE[WIP], which is independent of T : If we
omit this term from the long-run expected average
cost, then the drop in CðS�;L�Þ between the
situations where T ¼ 0 and T ¼ L� is 10.06%,
4.38%, 20.91%, and 7.09%, for cases 1–4,
respectively. To summarize, the basic insights
behind the results are the following.
In a production/inventory system operating

under the single-stage base stock policy: (a) There
appears to be a linear tradeoff between the
demand lead time and the optimal base stock
level. (b) The optimal planned supply lead time
appears to be the smallest demand lead time for
which the optimal base stock level is zero. This
means that if the demand lead time is smaller than
the optimal planned supply lead time, the optimal
base stock level is positive and a production
replenishment order is placed immediately after
the arrival of the customer demand that triggered
it. If the demand lead time is greater than the
optimal planned supply lead time, the optimal base
stock level is zero and a production replenishment
order is placed after the arrival of the customer
demand that triggered it with a delay that is equal
to the difference between the demand lead time
and the planned supply lead time.
3. Single-stage hybrid base stock/kanban policy

with ADI

The single-stage hybrid base stock/kanban
policy with ADI behaves exactly like the single-
stage base stock policy with ADI as far as the
placement of replenishment production orders is
concerned. The difference is that in the single-stage
hybrid base stock/kanban policy, when a replen-
ishment production order is placed, it is not
immediately authorized to be released into the
facility (as is the case in the base stock policy)
unless the inventory in the facility, i.e. WIP, or in
the entire system, i.e. WIP+FG, is below a given
inventory-cap level.
Setting an inventory-cap in any section of a
production/inventory system makes sense if this
section and/or the section downstream of it have
limited processing capacity. This is because releas-
ing a part in an already congested section of the
system with limited processing capacity, or in a
section without limited processing capacity (e.g., a
buffer) but which is followed by a section with
limited processing capacity, will increase the
inventory in that section with little or no decrease
in the part’s completion time. In the kind of multi-
stage serial systems that we study in this paper,
where each stage consists of a facility containing
WIP and an output store containing FG inven-
tory, all facilities have limited processing capacity,
and all output buffers, except the output buffer
of the last stage, are followed by facilities which
have limited processing capacity. In such systems,
therefore, it makes sense to set inventory-caps on
the (WIP+FG) inventory of all stages except the
last one and to set an inventory-cap on the WIP of
the last stage. In the case of a single-stage system
considered in this section, the one and only stage is
the last stage; therefore, for a single-stage system
we will only consider a base stock/kanban policy
where a WIP-cap is set on the WIP of the stage.
With the above discussion in mind, in the single-

stage hybrid base stock/kanban policy, when a
replenishment production order is placed, it is not
immediately authorized to be released in the
facility unless the WIP in the system is below a
given WIP-cap of K parts. If the WIP in the system
is at or above K ; the order is put on hold until the
WIP drops below K (the inventory drops as parts
exit the facility). Once the order is authorized to go
through, a new part is immediately released into
the facility. This policy can be implemented by
requiring that every part entering the facility be
granted a production authorization card or
kanban, where the total number of kanbans is
equal to the WIP-cap level. Once a part leaves the
facility, the kanban that was granted (and
attached) to it is detached and is used to authorize
the release of a new part into the facility. Notice
that the single-stage hybrid base stock/kanban
policy with no ADI is equivalent to the single-
stage generalized kanban policy (Buzacott, 1989;
Zipkin, 1989).
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In a single-stage hybrid base stock/kanban
policy with ADI, the system starts with a base
stock of S end-items in FG inventory and K free
kanbans. These kanbans are available to authorize
an equal number of replenishment production
orders. The number of free kanbans represents
the number of parts that can be released into the
facility before the WIP in the system reaches the
WIP-cap level K : A queuing network model of
the hybrid base stock/kanban policy with ADI is
shown in Fig. 3, where queue FK contains free

kanbans.
From Fig. 3, it can be seen that kanbans trace a

loop within a closed network linking FK and WIP.
The constant population of this closed network is
K ; i.e. at all times, FKþWIP ¼K : The through-
put of this closed network, denoted by THK ;
depends on K and determines the processing
capacity of the system, i.e. the maximum demand
rate l that the system can meet in the long run.
Under some fairly general conditions (that essen-
tially require that the facility exhibits ‘‘max-plus’’
behavior in the sense that the timings of events in
the system can be expressed as functions of the
timings of other events involving the operators
‘‘max’’ and ‘‘+’’ only), THK is an increasing
concave function of K ; such that TH0=0 and
THNoN: For every feasible demand rate l; such
that loTHN; there is a finite minimum value of
K ; say Kmin; such that for any KXKmin; THK>l;
which means that the system has enough capacity
to meet demand in the long run.
The single-stage hybrid base stock/kanban

policy includes the single-stage base stock and
kanban policies as special cases. Namely, the
single-stage hybrid base stock/kanban policy with
K ¼ N and SoN is equivalent to the single-stage
FG(S)
parts to 

customers

customer
demands

raw parts(∞) 

BD(0)

WIP(0)

OH(0) 

T max(0, T – L) ordersdelay

FK(K)
kanbans

Fig. 3. Single-stage hybrid base stock/kanban policy with ADI.
base stock policy with base stock level S: The
single-stage hybrid base stock/kanban policy with
K ¼ SoN is equivalent to the single-stage kan-
ban policy or equivalently to a make-to-stock
CONWIP policy with K (or equivalently, S)
kanbans (Di Mascolo et al., 1996).
We consider an optimization problem similar to

that considered in Section 2, whose objective is to
find the values of K ; S; and L that minimize the
long-run expected average cost of holding and
backordering inventory,

CðK ;S;LÞ ¼ hE½WIPKþFGK ðS;LÞ�

þ bE½BDK ðS;LÞ�; ð6Þ

where h and b are defined as in Section 2. It is not
difficult to see that control parameters S and L

affect only the expected average FG and BD and
not the expected average WIP or OH, whereas
parameter K affects the expected average FG, BD
as well as WIP and OH. We explicitly expressed
these dependencies in the cost function (6).

3.1. The case where there is no ADI

If there is no ADI, i.e. if T ¼ 0; the planned
supply lead time L is irrelevant, and the optimal
base stock level for any given value of K ; such that
KXKmin; S�K ; is the smallest integer that satisfies
(see Liberopoulos and Dallery, 2002)

PðOHK þWIPKpS�K ÞXb=ðb þ hÞ: ð7Þ

If the facility consists of a Jackson network of
servers, there is no analytical expression (not even
in non-closed form) to determine the steady-state
distribution of OHK and WIPK and therefore S�;
and only approximation methods exist (e.g., see
Frein et al., 1995). To shed some light into this
case, we numerically investigated the same in-
stance of the system that we investigated in Section
2.2, i.e. an instance in which the facility consists of
a Jackson network of four identical single-server
stations in series, for the same four sets of
parameter values shown in Table 1. For cases 1
and 2, THK can be calculated analytically as
THK ¼ m=½1þ ðM � 1Þ=K�; where M ¼ 4 (Frein
et al., 1995). Since Kmin is the smallest integer
for which THKmin

> l; it follows that Kmin is
the smallest integer that satisfies m=½1þ ðM �
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1Þ=Kmin� > l; i.e. Kmin > ðM � 1Þr=ð1� rÞ; where
r ¼ l=m: This implies that Kmin is equal to 13 and
30, for cases 1 and 2, respectively.
We used simulation to evaluate the long-run

expected average cost of the system for the four
sets of parameter values. In each case, we found
the optimal base stock levels for different values of
K ; S�K ; using exhaustive search. The results are
shown in Table 3. Plots of S�K versus K are shown
in Fig. 4 for the four cases. The values for K ¼ N

are taken from Table 2 for the case where T ¼ 0:
From Table 3 and Fig. 4, it can be seen that the

optimal base stock level S�K is non-increasing in K ;
Table 3

S�K and CðS�K ;L
�Þ versus K for the single-stage hybrid base stock/ka

Case 1 Case 2

K S�K CðK ;S�K Þ K S�K CðK ;S�K Þ

13 15 104.7284 33 227 246.6715

14 10 88.4036 40 96 109.8939

15 11 84.0617 45 81 94.3872

16 9 82.9463 50 75 88.3950

17 8 82.7963 60 71 84.4438

18 8 83.1151 68 69 83.6047

N 8 90.8954 69 68 82.8599

70 68 82.9287

N 68 83.6966
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Fig. 4. S�K and CðS�K ;L
�Þ versus K for the single-stage
i.e. S�Kþ1pS�K ; for KXKmin:Moreover, there exists
a finite critical value of K ; Kc; such that S�K ¼ S�

N
;

for KXKc; where S�
N

is the optimal base stock
level for the same system operating under the pure
base stock policy, i.e. a hybrid base stock/kanban
policy with K ¼ N: This means that there is a
tradeoff between K and S�K and that this tradeoff
holds for up to a finite critical value of K ; Kc: This
critical value is equal to 17, 69, 7, and 23, for cases
1–4, respectively. The same result is proven
analytically in Liberopoulos and Dallery (2002)
for a similar system with a slightly different
objective, namely, minimize the long-run expected
nban policy with no ADI

Case 3 Case 4

K S�K CðK ;S�K Þ K S�K CðK ;S�K Þ

6 5 40.4173 13 54 57.4847

7 4 38.3957 15 43 47.4977

8 4 39.3074 20 36 41.9549

9 4 40.6576 22 35 41.4670

10 4 41.9764 23 34 41.1375

11 4 43.0968 24 34 41.1463

N 4 48.0787 25 34 41.3125

N 34 42.8358
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hybrid base stock/kanban policy with no ADI.
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average cost of holding inventory subject to a
specified fill rate constraint. The insight behind this
result is the following.
As K increases, parts are released in the facility

earlier and depart from it earlier, causing the
average FG inventory to increase too. At the same
time, the congestion in the system also increases,
and therefore parts stay in the facility longer. This
implies that the rate of increase of the average FG
inventory is diminishing in K : At K ¼ Kc; the
facility reaches a critical congestion level. That is,
for values of K below Kc; the system is under-

congested in the sense that increasing K causes an
increase in the average FG inventory that is
enough to cause a further decrease in S�K : For
values of K at or above Kc; however, the system is
over-congested in the sense that increasing K does
not cause an increase in the average FG inventory
that is enough to cause a further decrease in S�K :
An important question that remains to be an-
swered is what is the overall optimal number of
kanbans K� and the resulting optimal base stock
level S�

K� ?
The most striking result of the optimization is

that in all four cases, the overall optimal number
of kanbans, K�; is equal to Kc; and therefore the
overall optimal base stock level, S�; is equal to
S�
N
:More specifically, K� is equal to 17, 69, 7, and

23, for cases 1–4, respectively, and S� is equal to 8,
68, 4, and 34, for cases 1–4, respectively. This is
not an obvious result. The insight behind it is that
the optimal base stock level of the hybrid base
stock/kanban policy, S�; appears to be equal to
the optimal base stock level of the pure base stock
policy, S�

N
; i.e. the smallest possible value of S�K :

Moreover, the optimal number of kanbans, K�; is
the smallest value of K for which S�K ¼ S�

N
: In

other words, it is optimal to set K to a value that is
just big enough so that the corresponding optimal
base stock level is equal to the optimal base stock
level of the pure base stock policy, S�

N
: This means

that the pure base stock policy is not optimal but
the optimal base stock level of the pure base stock
policy is also optimal for the hybrid base stock/
kanban policy. Computational experience re-
ported in Duri et al. (2000), Karaesmen and
Dallery (2000), and Zipkin (2000, Section 8.8.2)
for simpler single-machine systems also confirms
this result. The difficulty in proving it stems from
the fact that no analytical expression for the
steady-state distribution of OHK and WIPK exists,
except for a trivial system where the facility
consists of a single-server station with exponential
service rate m; in which case Kmin ¼ Kc ¼ 1:
Nevertheless, an indication of the validity of this
result is given in Liberopoulos and Dallery
(2002).
The simulation-based results also suggest that

the long-run expected average cost increases more
steeply to the left of K� than to the right of K�:
This means that it is more costly to underestimate
K relatively to the optimal value K� than to
overestimate it. Naturally, as K-N; the long-run
expected average cost approaches CðN;S�

N
Þ; i.e.

the minimum cost of the pure base stock policy. In
our numerical examples, the minimum long-run
expected average cost for the optimal base stock
policy is 90.8954, 83.6966, 48.0787, and 42.8358,
for cases 1–4, respectively, as is seen in Table 2,
whereas, the minimum long-run expected average
cost for the optimal hybrid base stock/kanban
policy is 82.7963, 82.8599, 38.3957, and 41.1375,
for cases 1–4, respectively, as is seen in Table 3.
This means that the minimum long-run expected
average cost is 8.91%, 1%, 20.14%, and 3.96%
smaller under the optimal hybrid base stock/
kanban policy than it is under the optimal base
stock policy, for cases 1–4, respectively. The fact
that the reduction in cost is more dramatic in case
1 than in case 2 (and similarly in case 3 than in case
4) is due to two reasons. The first reason is that the
cost ratio h=b is higher in case 1 than in case 2;
therefore, reducing the average WIP with a WIP-
cap mechanism is more effective in case 1 than in
case 2, since in case 1, every part in WIP costs
relatively more. The second reason is that the
utilization coefficient, r; is higher in case 2 than in
case 1. This implies that in case 2, the distribution
of the inter-departure times from the facility is less
sensitive to the distribution of the inter-arrival
times to the facility than it is in case 1. It further
implies that in case 2, S�K and CðK ;S�K Þ are
less sensitive to K than they are in case 1. Finally,
the fact that the reduction in cost is more dramatic
in case 3 than in case 1 (and similarly in case 4 than
in case 2) implies that imposing a WIP-cap
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mechanism is more effective in a system with lower
flow time variability.

3.2. The case where there is ADI

If there is ADI, i.e. if T > 0; and the facility
consists of a Jackson network of servers, there are
no analytical results for the optimal parameter
values. Intuitively, we would expect that as T

increases, the optimal base stock level of the
hybrid base stock/kanban policy should decrease.
The question is how exactly does it decrease, in
particular with respect to the optimal base stock
level of the pure base stock policy? Also, does the
optimal number of kanbans decrease too?
To shed some light into this case, we numeri-

cally investigated the same instance of the system
that we investigated in Sections 2.2 and 3.1, i.e. an
instance in which the facility consists of a Jackson
network of four identical single-server stations in
series, for the same four sets of parameter values
shown in Table 1. We used simulation to evaluate
the long-run expected average cost of the system
for the four cases, and in each case we optimized
the control parameters, K ; S; and L for different
values of T using exhaustive search. The results
are shown in Table 4 for selected values of K

around the optimal values and L ¼ L�:
From the results in Table 4, it appears that in all

cases, the optimal number of kanbans, K�; is equal
to Kc for all values of T ; i.e. K� appears to be
independent of T : Namely, K� is equal to 17, 69,
Table 4

S�K and CðS�K ;L
�Þ versus T and K ; for L ¼ L�; for the single-stage h

Case 1 Case 2

T K S�K CðK ;S�K Þ T K S�K CðK ;S�K Þ

4 16 6 82.6148 40 67 34 82.3769

17 5 82.4321 69 31 81.7778

18 5 82.7398 71 31 82.0570

8 16 3 82.2708 60 67 15 81.7949

17 2 82.0512 69 12 81.2404

18 2 82.3473 71 12 81.5260

10 16 1 82.0972 73 67 3 81.4527

17 0 81.9289 69 0 80.8782

18 0 82.1906 71 0 81.1567
7, and 23, for cases 1–4, respectively. Moreover,
L� and S� have the same values as in the single-
stage base stock policy with ADI discussed in
Section 2.2. Namely, L� is approximately equal to
10, 73, 6, and 35, for cases 1–4, respectively, and
S� has the same values as those shown in Table 2.
This is not an obvious result. The insight behind it
is the following.
When T ¼ 0; S� > 0: When S� > 0; it appears

that it is optimal to place a replenishment
production order immediately upon the arrival of
a customer demand to the system, irrespectively of
the value of T (as long as T is small enough so that
S� > 0). Whenever a replenishment production
order is placed immediately upon the arrival of a
customer demand to the system, T does not affect
what goes on in the facility but only affects FG
and BD. More specifically, T is a tradeoff for S�;
where S� also affects only FG and BD. Therefore,
the value of K that determines the optimal
processing capacity and congestion level in the
facility when T ¼ 0; namely Kc; is also optimal
when T > 0:
The results in Section 3.1 showed that for T ¼ 0;

S� is equal to the optimal base stock level of the
pure base stock policy, S�

N
: For T > 0; it appears

that the tradeoff that exists between T and S� in
the hybrid base stock/kanban policy is exactly the
same as the tradeoff between T and S�

N
in the pure

base stock policy presented in Section 2.2. In other
words, S� ¼ S�

N
; for T > 0: This means that as T

increases starting from zero, S� decreases and
ybrid base stock/kanban policy with ADI

Case 3 Case 4

T K S�K CðK ;S�K Þ T K S�K CðK ;S�K Þ

2 6 4 40.1270 10 21 26 41.2114

7 3 38.0275 23 24 40.7101

8 3 38.9747 25 24 40.8552

4 6 2 39.8828 20 21 17 40.7926

7 1 37.6979 23 16 40.2179

8 1 38.5364 25 16 40.4074

6 6 1 39.5846 35 21 2 40.0908

7 0 37.2553 23 0 39.5676

8 0 38.1188 25 0 39.6699
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reaches zero at T just below L�; exactly as in the
pure base stock policy. To summarize, the basic
insights behind the results are the following.
In a production/inventory system operating

under the single-stage hybrid base stock/kanban
policy, the following is true. When there is no
ADI, i.e. when the demand lead time is zero, then:
(a) There is a tradeoff between the optimal base
stock level and the number of kanbans. (b) This
tradeoff holds for up to a finite critical number of
kanbans. If the number of kanbans is above this
critical number, the optimal base stock level is at
its minimum value. This value is equal to the
optimal base stock level of the same system
operating under the single-stage base stock policy
with no ADI. (c) The critical number of kanbans
and the corresponding minimum base stock level
appear to be the optimal control parameters of the
hybrid policy. When there is ADI, i.e. when the
demand lead time is zero, then: (a) The optimal
number of kanbans appears to be equal to the
critical number of kanbans that is optimal in
the case where there in no ADI. (b) The optimal
base stock level appears to be equal to the optimal
base stock level of the same system operating
under the single-stage base stock policy with ADI.
This means that the linear tradeoff between the
optimal base stock level and the demand lead time
that appears to hold for the pure base stock policy
also holds for the hybrid base stock/kanban
policy.
FG1(S1) FG2(S2) 
parts to 

customers

customer
demands 

raw parts(∞) 

OH2(0)

WIP1(0)

BD(0) 

WIP2(0)

OH1(0)  

max(0,T – L1 – L2)delay
max(0, T – L2)

T
orders

Fig. 5. Two-stage base stock policy with ADI.
4. Two-stage base stock policy with ADI

In this section, we extend the single-stage base
stock policy with ADI considered in Section 2 to a
system having two stages. The two-stage base
stock policy with ADI is similar to the policy
considered in Karaesmen et al. (2002). In the two-
stage policy, customer demands arrive for one end-
item at a time according to a Poisson process with
rate l; with a constant demand lead time, T ; in
advance of their due dates, as in the single-stage
case. The arrival of every customer demand
eventually triggers the consumption of an end-
item from FG inventory and the placement of a
replenishment production order to the facility of
each of the two stages in the system. More
specifically, the consumption of an end-item from
FG inventory is triggered T time units after the
arrival time of the demand, as in the single-stage
case. If no end-items are available at that time, the
demand is backordered. The control policy de-
pends on four design parameters, namely, the base
stock level of end-items in FG inventory at stage n;
n ¼ 1; 2; denoted by Sn; and the planned supply
lead time of stage n; n ¼ 1; 2; denoted by Ln:
Initially, the system starts with a base stock of Sn

end-items in FG inventory at stage n; n ¼ 1; 2: The
time of placing the replenishment order at stage 2
is determined by offsetting the demand due date by
the planned supply lead time of stage 2, L2: The
time of placing the replenishment order at stage 1
is determined by offsetting the demand due date by
the sum of the planned supply lead times of stages
1 and 2, L1 þ L2: This means that the delay in
placing an order at stage 2 is equal to max(0,
T � L2), as in the single-stage case. The delay in
placing an order at stage 1, on the other hand, is
equal to max[0, T � ðL1 þ L2Þ]. In general, in a
system with N stages, the delay in placing an order
at stage n is equal to maxð0;T � Le

nÞ; where Le
n

denotes the echelon planned supply lead time at
stage n; which is defined as Le

n ¼ Ln þ Lnþ1 þ?þ
LN ; n ¼ 1; 2;y;N : When an order is placed at
stage 1, a new part is immediately released into the
facility of stage 1. When an order is placed at stage
2, a new part is also immediately released into the
facility of stage 2, provided that such a part is
available in the FG output store of stage 1.
Otherwise, the order remains on hold until a
part becomes available in the FG output store of
stage 1. If there is no ADI, i.e. if T ¼ 0; both the
consumption of an end-item from FG inventory
and the replenishment orders are triggered at the
demand arrival time, and the resulting policy is the
classical base stock policy. A queuing network
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Table 5

Parameter values for the case of the two-stage base stock policy

with ADI

Case 1=l 1=m r ¼ l=m h1 h2 b

1 1.1 1.0 0.90909y 1 3 9
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model of the two-stage base stock policy with ADI
is shown in Fig. 5.
We consider an optimization problem which is

similar to that considered in Section 2, where the
objective is to find the values of S1; S2; L1; and L2

that minimize the long-run expected average cost
of holding and backordering inventory,

CðS1;S2;L1;L2Þ ¼ h1E½WIP1 þ FG1ðS1;L1;L2Þ�

þ h2E½WIP2ðS1;L1;L2Þ

þ FG2ðS1;S2;L1;L2Þ�

þ bE½BDðS1;S2;L1;L2Þ�; ð8Þ

where hn is the unit cost of holding WIP+FG
inventory per unit time at stage n and b is the unit
cost of backordering end-item inventory per unit
time. In expression (8), we explicitly express the
dependencies of WIP1, FG1, WIP2, FG2, and BD
on parameters S1; S2; L1; and L2:

4.1. The case where there is no ADI

If there is no ADI, i.e. if T ¼ 0; the planned
supply lead time parameters L1 and L2 are
irrelevant. Unfortunately, even in this case there
are no analytical results for the optimal base stock
levels S�1 and S�2 ; even when each facility consists
of a Jackson network of servers. Some approx-
imation methods for the performance evaluation
of the system have been developed in Buzacott and
Shanthikumar (1993, Section 10.7), Duri et al.
(2000), and Bonvik et al. (1997, Section 8.3.4.3).
The only analytically tractable case is the case
where S�1 ¼ 0: In this case, the two-stage base
stock policy is equivalent to a single-stage base
stock policy, where the facilities of stages 1 and 2
are merged into a single facility. The case where
S�1 ¼ 0 clearly arises when h1Xh2; because then,
holding FG inventory at stage 1 not only has a
smaller positive impact on customer service than
holding FG inventory at stage 2 but is also at least
as expensive as holding FG inventory at stage 2.
Therefore, if T ¼ 0; the only interesting case to
look at is the case where h1oh2: This case is closer
to reality anyway, because, the further down-
stream inventory is held, the more value has been
added to it, and therefore, the more its holding
cost. In what follows, we will therefore assume
that h1oh2:

4.2. The case where there is ADI

If there is ADI, i.e. if T > 0; there are no
analytical results for the optimal parameter values.
As in the single-stage base stock policy with ADI
considered in Section 2, intuitively, we would
expect that as T increases, the optimal base stock
levels of both stages should decrease. The question
is how exactly do they decrease in T?
To shed some light into this issue, we numeri-

cally investigated a particular instance of the
system, in which each facility consists of a Jackson
network of two identical, single-server stations in
series, and each server has an exponential service
rate m: For this instance, we considered the set of
parameter values shown in Table 5. We only
looked at one case because there are four
parameters to optimize and optimization via
simulation is computationally very demanding.
The inventory holding cost rates are such that
h1oh2; so that S�1 > 0 (recall that if S�1 ¼ 0; the
two-stage policy is equivalent to a single-stage
policy where the facilities of stages 1 and 2 are
merged into a single facility).
For this set of parameter values, we used

simulation to evaluate the long-run expected
average cost of the system, and we optimized the
control parameters, S1; S2; L1; and L2 for different
values of T using exhaustive search. The optimiza-
tion yielded the following results.
For T ¼ 0; L1 and L2 are irrelevant and S�1 ¼

24 and S�2 ¼ 32: As T increases from zero,
S�1 appears to remain constant, while S�2 appears
to decrease linearly with T and reach zero just
below T ¼ L�2 ; where L�2 ¼ 34: As T further
increases from L�2 ; S�2 appears to remain zero,
while S�1 appears to decrease linearly with T and
reach zero just below T ¼ L�1 þ L�2 ; where L�1 þ
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Table 6

S�1 ; S�2 ; and CðS�1 ;S
�
2 Þ versus T ; for L1 ¼ L�1 and L2 ¼ L�2 ; for

the two-stage base stock policy with ADI

T S�1 S�2 CðS�1 ;S
�
2 Þ

0 24 32 158.7183

10 24 23 157.8996

20 24 13 157.0982

25 24 9 156.6986

33 24 1 156.0171

34 24 0 155.9370

40 17 0 155.7578

50 10 0 154.8409

60 1 0 155.2108

61 0 0 154.9056

95 0 0 155.0616

Fig. 6. S�1 ; S�2 ; and CðS�1 ;S
�
2 Þ versus T ; for L1 ¼ L�1 and L2 ¼

L�2 ; for the two-stage base stock policy with ADI.

Table 7

S�1 ; S�2 ; and CðS�1 ;S
�
2 Þ versus T ; L1 and L2 for the two-stage

base stock policy with ADI

T L1 L2 S�1 S�2 CðS�1 ;S
�
2 Þ

34 27 33 25 0 156.1356

27 34 24 0 155.9370

27 35 24 0 155.9370

40 27 33 18 0 156.0771

27 34 17 0 155.7578

27 35 15 0 156.5931

61 26 34 6 0 155.9039

27 34 0 0 154.9056

28 34 0 0 154.9056
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L�2 ¼ 61; therefore L�1 ¼ 27: The optimal values of
S�1 and S�2 and the resulting cost CðS�1 ;S

�
2 Þ versus

T are shown in Table 6 and are plotted in Fig. 6,
for the optimal planned supply lead times L�1 ¼ 27
and L�2 ¼ 34: Table 7 shows the optimal values of
S�1 and S�2 and the resulting cost CðS�1 ;S

�
2 Þ versus

T and selected values of L1 and L2 around the
optimal values.
The insight behind the results is the following.

When T ¼ 0; S�1 > 0 and S�2 > 0:When S�1 > 0 and
S�2 > 0; it appears that it is optimal to place a
replenishment production order immediately upon
the arrival of a customer demand to every stage,
irrespectively of the value of T (as long as T is
small enough so that S�1 > 0 and S�2 > 0). When-
ever a replenishment production order is placed
immediately upon the arrival of a customer
demand to every stage, T affects only the FG
inventory of stage 2 and BD and not what goes on
in the two facilities. In this case, T is a tradeoff for
S�2 ; where S�2 also affects only the FG inventory of
stage 2 and BD. Therefore, as T increases from
zero, it appears that it is optimal to reduce only S�2
and not S�1 : When T is just below L�2 ; S�2 becomes
zero. As T increases beyond L�2 ; it appears that S�2
remains at zero, and orders are placed at stage 2
with a delay of T � L�2 : At the same time, S�1 starts
decreasing with T ; while orders are still placed at
stage 1 with no delay. When T is just below L�1 þ
L�2 ; it appears that S�1 becomes zero too. As T

increases beyond L�1 þ L�2 ; both S�1 and S�2 remain
at zero, while orders are placed at stages 2 and 1
with delays of T � L�2 and T � ðL�1 þ L�2 Þ; respec-
tively. As in the case of the single-server station,
the optimal planned supply lead times are inde-
pendent of T : The minimum long-run expected
average cost decreases very little with T and
attains its minimum value at T ¼ L�1 þ L�2 :
The results imply that as T increases and

therefore more demand information becomes
available in advance, the optimal base stock levels
of all stages appear to drop to zero one after the
other, starting from the last stage. An alternative
way of looking at this is that as T increases,
the optimal echelon base stock level of every stage
appears to drop to zero, where by echelon base
stock of a stage we mean the sum of the base stock
levels of the stage and all its downstream stages.
Moreover, replenishment production orders are
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placed with a delay at a stage only when T is large
enough so that the optimal echelon base stock
level of the stage is zero. To summarize, the basic
insights behind the results are the following.
In a production/inventory system controlled by

a two-stage base stock policy, at each stage: (a)
there appears to be a linear tradeoff between the
demand lead time and the optimal echelon base
stock level, and (b) the optimal echelon planned
supply lead time appears to be the smallest
demand lead time for which the optimal echelon
base stock level is zero.
5. Two-stage hybrid base stock/kanban policy

with ADI

The two-stage hybrid base stock/kanban policy
with ADI is an extension of the single-stage hybrid
base stock/kanban policy with ADI, presented in
Section 3, to two stages. Recall from our discus-
sion in the second paragraph of Section 3 that in
the kind of multi-stage serial systems that we study
in this paper, it makes sense to set a (WIP+FG)-
cap on the (WIP+FG) inventory in all but the last
stage and to set a WIP-cap on the WIP of the last
stage; therefore, for the two-stage system consid-
ered in this section, we will only consider
the hybrid base stock/kanban policy where a
(WIP+FG)-cap is set on the (WIP+FG) inven-
tory of the first stage and WIP-cap is set on the
WIP of the second stage.
With the above discussion in mind, the two-

stage hybrid base stock/kanban policy with ADI
behaves exactly like the two-stage base stock
FG1(S1)raw parts(∞) 

OH2(0)

WIP1(0)

OH1(0)

kanbans

FK2(K2) FK1(K1 – S1) 

max(0, T – L1 – L2)delay max(0, T 
orders

Fig. 7. Two-stage hybrid base sto
policy with ADI as far as the placement of
replenishment production orders is concerned.
The difference is that in the two-stage hybrid base
stock/kanban policy, when a replenishment pro-
duction order is placed to the facility of stage 1, it
is not immediately authorized to be released into
that facility unless the (WIP+FG) inventory at
stage 1 is below a given (WIP+FG)-cap of K1

parts. If the (WIP+FG) inventory at stage 1 is at
or above K1; the order is put on hold until the
(WIP+FG) inventory drops below K1 (the
(WIP+FG) inventory drops as FG parts from
stage 1 are consumed by stage 2). Once the order is
authorized to be released into the facility, a new
part is immediately released into the facility,
because it is assumed that there is an infinite
number of raw parts. This policy can be imple-
mented by requiring that every part entering the
facility be granted a kanban, where the total
number of kanbans is equal to the (WIP+FG)-cap
level. Once a part leaves the FG output store, the
kanban that was granted (and attached) to it is
detached and is used to authorize the release of a
new part into the facility. A similar mechanism is
in place at stage 2, except that it is the WIP rather
than the (WIP+FG) inventory that is constrained,
i.e. when a replenishment production order is
placed to the facility of stage 2, it is not
immediately authorized to be released into that
facility unless the WIP at stage 2 is below a given
WIP-cap of K2 parts.
Notice that the two-stage hybrid base stock/

kanban policy with no ADI is equivalent to a
mixture of the extended kanban policy (Dallery
and Liberopoulos, 2000) at stage 1 and the
FG2(S2) 
parts to 

customers

customer
demands

BD(0)

WIP2(0)

– L2) T

ck/kanban policy with ADI.
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Table 8

S�1 ; S�2 ; and CðS�1 ;S
�
2 Þ versus T ; K1; and K2; for L1 ¼ L�1 and

L2 ¼ L�2 ; for the two-stage hybrid base stock/kanban policy

with ADI

T K1 K2 S�1 S�2 CðS�1 ;S
�
2 Þ

0 42 26 31 32 155.7978

42 28 26 32 155.0267

42 30 26 32 155.0935

44 26 27 32 155.1304

44 28 24 32 154.8046

44 30 24 32 154.9027

46 26 26 32 154.9793

46 28 24 32 156.6758

46 30 24 32 155.7128

20 42 26 31 13 154.1961

42 28 26 13 153.5168

42 30 26 13 153.5238

44 26 27 13 153.6286

44 28 24 13 153.3745

44 30 24 13 153.3911

46 26 26 13 153.4994

46 28 24 13 155.2802

46 30 24 13 154.2590

40 42 26 21 0 153.3327

42 28 19 0 153.0503

42 30 19 0 153.2261

44 26 20 0 153.1847

44 28 17 0 152.9341

44 30 17 0 154.1602

46 26 19 0 153.0693

46 28 17 0 153.0853

46 30 17 0 153.1135
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generalized kanban policy (Buzacott, 1989;
Zipkin, 1989) at stage 2. A queuing network
model of the two-stage hybrid base stock/kanban
policy with ADI is shown in Fig. 7.
If there is ADI, i.e. if T > 0; there are no

analytical results available for the optimal para-
meter values. To shed some light into this case, we
numerically investigated the same instance of the
system as that in Section 4, for the same set of
parameter values shown in Table 5. For this set of
parameter values, we used simulation to evaluate
the long-run expected average cost of the system,
and we set out to optimize the control parameters
K1; K2; S1; S2; L1; and L2 for different values of T ;
using exhaustive search.
The results of the optimization indicate that the

properties of the optimal parameter values are
similar to those of the optimal parameter values in
the single-stage hybrid base stock/kanban policy.
Namely, for T ¼ 0; L1 and L2 are irrelevant, and
S�1 and S�2 appear to be equal to the optimal base
stock levels for the two-stage pure base stock
policy, i.e. S�1 ¼ 24 and S�2 ¼ 32: Moreover, the
optimal numbers of kanbans K�

1 and K�
2 appear to

be equal to the smallest values of K1 and K2 for
which the optimal base stock levels are equal to the
optimal base stock levels in the two-stage pure
base stock policy. These values are K�

1 ¼ 44 and
K�
2 ¼ 28:
For T > 0; K�

1 and K�
2 appear to remain

constant for all values of T ; whereas L�1 ; L�2 ; S�1 ;
and S�2 appear to have the exact same values as in
the two-stage base stock policy with ADI dis-
cussed in Section 4. Namely, L�1 ¼ 27 and L�2 ¼
34; and S�1 and S�2 are given in Table 6. The insight
behind these results is the same as that behind the
results for the single-stage hybrid base stock/
kanban policy. The optimal are shown in Table 8
for selected values of K1 and K2 around the
optimal values and L1 ¼ L�1 ; L2 ¼ L�2 :
95 42 26 0 0 153.1015

42 28 0 0 151.6153

42 30 0 0 152.4563

44 26 0 0 152.9508

44 28 0 0 151.4917

44 30 0 0 152.8287

46 26 0 0 153.0745

46 28 0 0 152.9572

46 30 0 0 152.6148
6. Conclusions

We numerically investigated the tradeoffs be-
tween optimal base stock levels, numbers of
kanbans, and planned supply lead times in
single-stage and two-stage production/inventory
systems operating under base stock and hybrid
base stock/kanban policies with ADI. The results
of our investigation lead to the following con-
jectures.
In multi-stage make-to-stock production/inven-

tory control policies in which a base stock level of
FG inventory is set at every stage, that base stock
level represents FG that have been produced
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before any demands have arrived to the system in
order to satisfy the expected demand during the
supply lead time and protect the system against
uncertainties in production or demand that may
cause costly backorders.
The results in this paper indicate that when there

is ADI, the echelon planned supply lead times and
the number of kanbans should be as small as
possible, so that the placement and authorization
for the release of replenishment production orders
are delayed as much as possible, as long as this
does not cause an increase in the optimal base
stock level of FG inventory above its lowest
possible value. The lowest possible optimal base
stock level is attained when the replenishment
policy adopted is such that a replenishment order
is placed and released into the facility of every
stage immediately after the arrival of the customer
demand that triggered it. This can be achieved by
setting the echelon planned supply lead time at the
first stage greater than or equal to the demand lead
time, and by setting the number of kanbans equal
to infinity at every stage, so that no inventory-cap
is imposed at any stage.
Moreover, for a fixed demand lead time,

the more upstream a stage is, the less ADI is
available to it and so the higher the need to keep a
base stock of FG inventory of that stage. As the
demand lead time increases, the amount of ADI
increases from downstream to upstream, and so
the need to keep a base stock of FG inventory at
each stage decreases from downstream to up-
stream. The results in this paper indicate that it is
optimal to reduce the optimal base stock levels at
all stages until they drop to zero, one after the
other, starting from the last stage and moving
upstream the system.
Finally, the optimal number of kanbans deter-

mines the optimal production capacity of the
system and appears to be independent of the
amount of ADI.
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