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Abstract. We develop a general purpose analytical approximation method for the
performance evaluation of a multi-stage, serial, echelon kanban control system.
The basic principle of the method is to decompose the original system into a set of
nested subsystems, each subsystem being associated with a particular echelon of
stages. Each subsystem is analyzed in isolation using a product-form approximation
technique. An iterative procedure is used to determine the unknown parameters of
each subsystem. Numerical results show that the method is fairly accurate.
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1 Introduction

In 1960, Clark and Scarf [10] initiated the research on the coordination of multi-
stage, serial, uncapacitated inventory systems with stochastic demand and constant
lead times. Their work received considerable attention in the years that followed
and spawned a large amount of follow-on research. Much of that research evolved
around variants of the base stock control system. Research on the coordination of
multi-stage, serial, production/inventory systems having networks of stations with
limited capacity, on the other hand, has been directed mostly towards variants of
the kanban control system. In this paper, we develop an analytical approximation
method for the performance evaluation of an echelon kanban control system, used
for the coordination of production in a multi-stage, serial production/inventory
system. We test the behavior of this method with several numerical examples.

The term “echelon kanban” was introduced in [19]. The basic principle of the
operation of the echelon kanban control system is very simple: When a part leaves
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the last stage of the system to satisfy a customer demand, a new part is demanded
and authorized to be released into each stage. It is worth noting that the echelon
kanban control system is equivalent to the integral control system described in [8].
The echelon kanban control system differs from the conventional kanban control
system, which is referred to as installation kanban control system or policy in [19],
in that in the conventional kanban control system, a new part is demanded and
authorized to be released into a stage when a part leaves this particular stage and
not when a part leaves the last stage, as is the case with the echelon kanban control
system. This implies that in the conventional kanban control system, the placement
of a demand and an authorization for the production of a new part into a stage is
based on local information from this stage, whereas in the echelon kanban control
system, it is based on global information from the last stage. This constitutes a
potential advantage of the echelon kanban control system over the conventional
kanban control system. Moreover, the echelon kanban control system, just like the
conventional kanban control system, depends on only one parameter per stage, the
number of echelon kanbans, as we will see later on, and is therefore simpler to
optimize and implement than more complicated kanban-type control systems that
depend of two parameters per stage, such as the generalized kanban control system
[7] and the extended kanban control system [12]. These two apparent advantages of
the echelon kanban control system motivated our effort to develop an approximation
method for its performance evaluation.

Kanban-type production/inventory systems have often been modeled as queue-
ing networks in the literature. Consequently, most of the techniques that have been
developed for the analysis of kanban-type production/inventory systems are based
on methods for the performance evaluation of queueing networks. Exact analytical
solutions exist for a class of queueing networks known as separable, in which the
steady-state joint probabilities have a product-form solution. Jackson [18] was the
first to show that the steady-state joint probability of an open queueing network with
Poisson arrivals, exponential service times, probabilistic routing, and first-come-
first-served (FCFS) service disciplines has a product-form solution, where each
station of the network can be analyzed in isolation as an M/M/1 queue. For closed
queueing networks of the Jackson type, Gordon and Newell [17] showed that an
analytical, product-form solution also exists. The performance parameters of such
networks can be obtained using efficient algorithms, such as the mean value analy-
sis (MVA) algorithm [22] and the convolution algorithm [9]. The BCMP theorem
[1] summarizes extensions of product-form networks that incorporate alternative
service disciplines and several classes of customers.

Since the class of queueing networks for which an exact solution is known
(separable networks) is too restrictive for modeling and analyzing real systems,
much work has been devoted to the development of approximation methods for the
analysis of non-separable networks. Whitt [27] presented an approximation method
for the analysis of a general open queueing network that is based on decomposing
the network into a set of GI/GI/1 queues and analyzing each queue in isolation. In
the case of closed queueing networks, the approximation methods are for the most
part based on two approaches. The first approach relies on heuristic extensions of
the MVA algorithm (e.g. [23]). The second approach relies on approximating the
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performance of the original network by that of an equivalent product-form network.
Spanjers et al. [24] developed a method that is based on the second approach for
a closed-loop, two-indenture, repairable-item system. Interestingly, their system is
equivalent to an echelon kanban control system with a finite population of exter-
nal jobs. Their method aggregates several states of the underlying continuous-time
Markov chain and adjusts some service rates using Norton’s Theorem for closed
queueing networks to obtain a product-form solution. Among the different methods
that rely on the second approach, Marie’s method [20] has attracted considerable at-
tention. Extensions and comparative studies of Marie’s method have been proposed
for a variety of queueing networks [2–5], and [11]. Di Mascolo, Frein and Dallery
[14,16] developed approximation methods based on Marie’s method for the perfor-
mance evaluation of the conventional kanban control system and the generalized
kanban control system.

The approximation method that we develop in this paper for the performance
evaluation of the echelon kanban control system relies on Marie’s method. To
develop our method, we first model the system as an open queueing network with
synchronization stations. By exchanging the roles of jobs (parts) and resources
(echelon kanbans) in the open network, we obtain an equivalent, multi-class, nested,
closed queueing network, in which the population of each class is equal to the job
capacity or number of echelon kanbans of the echelon of stages associated with a
particular stage. The echelon of stages associated with a particular stage is the stage
itself and all its downstream stages. We then decompose the closed network into a
set of nested subsystems, each subsystem being associated with a particular class.
This means that we have as many subsystems as the number of the stages. Each
subsystem is analyzed in isolation using Marie’s method. Each subsystem interacts
with its neighboring subsystems in that it includes its downstream subsystem in the
form of a single-server station with load-dependent, exponential service rates, and
it receives external arrivals from its upstream subsystem. A fixed-point, iterative
procedure is used to determine the unknown parameters of each subsystem by
taking into account the interactions between neighboring subsystems.

The rest of this paper is organized as follows. In Section 2, we describe the
exact operation of the echelon kanban control system by means of a simple exam-
ple. In Section 3 we present the queueing network model of the echelon kanban
control system and the performance measures of the system that we are interested
in evaluating. In Section 4, we describe the decomposition of the original system
into many subsystems. In Section 5, we present the analysis in isolation of each sub-
system, and in Section 6 we develop the analysis of the entire system. In Section 7,
we present numerical results on the effects and optimization of the parameters.
Finally, in Section 8, we draw conclusions. The analysis of the synchronization sta-
tions that appear in the queueing network models of each subsystem is presented
in Appendices A and B, and a table of the notation used in the paper is given in
Appendix C.
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Fig. 1. A serial production system decomposed into three stages in series

2 The echelon kanban control system

In this section, we give a precise description of the operation of the echelon kan-
ban control system by means of a simple example. In this example, we consider
a production system that consists of M = 9 machines in series, labeled M1 to
M9, produces a single part type, and does not involve any batching, reworking or
scrapping of parts. Each machine has a random processing time. All parts visit
successively machines M1 to M9. The production system is decomposed into N =
3 stages. Each stage is a production/inventory system consisting of a manufactur-
ing process and an output buffer. The output buffer stores the finished parts of the
stage. The manufacturing process consists of a subset of machines of the original
manufacturing system and contains parts that are in service or waiting for service
on the machines. These parts represent the work in process (WIP) of the stage and
are used to supply the output buffer. In the example, each stage consists of three
machines. More specifically, the sets of machines {M1, M2, M3}, {M4, M5, M6}
and {M7, M8, M9} belong to stages 1, 2 and 3, respectively. The decomposition
of the production system into three stages is illustrated in Figure 1.

Each stage has associated with it a number of echelon kanbans that are used
to demand and authorize the release of parts into this stage. An echelon kanban
of a particular stage traces a closed path through this stage and all its downstream
stages. The number of echelon kanbans of stage i is fixed and equal to Ki. There
must be at least one echelon kanban of stage i available in order to release a new
part into this stage. If such a kanban is available, the kanban is attached onto the
part and follows it through the system until the output buffer of the last stage. Since
an echelon kanban of stage i is attached to every part in any stage from i to N , the
number of parts in stages i to N is limited by Ki.

Parts that are in the output buffer of stage N are the finished parts of the
production system. These parts are used to satisfy customer demands. When a
customer demand arrives to the system, a demand for the delivery of a finished
part from the output buffer of the last stage to the customer is placed. If there
are no finished parts in the output buffer of the last stage, the demand cannot be
immediately satisfied and is backordered until a finished part becomes available. If
there is at least one finished part in the output buffer of the last stage, this part is
delivered to the customer after releasing the kanbans of all the stages (1, 2, and 3,
in the example) that were attached to it, hence the demand is immediately satisfied.
The released kanbans are immediately transferred upstream to their corresponding
stages. The kanban of stage i carries with it a demand for the production of a new
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stage−i finished part and an authorization to release a finished part from the output
buffer of stage i − 1 into stage i. When a finished part of stage i − 1 is transferred
to stage i, the stage-i kanban is attached to it on top of the kanbans of stages 1 to
i − 1, which have already been attached to the part at previous stages. With this in
mind, we can just as well assume that

Ki ≥ Ki+1, i = 1, . . ., N − 1. (1)

3 Queueing network model of the echelon kanban control system

In order to develop the approximation method for the performance evaluation of
the echelon kanban control system, we first model the system as an open queueing
network with synchronization stations. Figure 2 shows the queueing network model
of the echelon kanban control system with three stages in series, considered in
Section 2. The manufacturing process of each stage is modeled as a subnetwork in
which the machines of the manufacturing process are represented by single-server
stations. The subnetwork associated with the manufacturing process of stage i is
denoted by Li, and the single-server stations representing machines M1,. . . , M9
are denoted by S1,. . . , S9, respectively. The number of stations of subnetwork Li

is denoted by mi. In the example, mi = 3, i = 1, 2, 3. The echelon kanban control
mechanism is modeled via three synchronization stations, denoted by J i, at the
output of each stage i, i = 1, 2, 3.

A synchronization station is a modeling element that is often used to model
assembly operations in queueing networks. It can be thought of as a server with
instant service times. This server is fed by two or more queues (in our case by two).
When there is at least one customer in each of the queues that feed the server, these
customers move instantly through and out of the server. This implies that, at any
time, at least one of the queues that feed the server is empty. Customers that enter
the server, exit the server after possibly having been split into more or merged into
fewer customers. In our case, the queues in each synchronization station contain
either parts or demands combined with kanbans.

To illustrate the operation of the synchronization stations, let us first focus on
any synchronization station Ji, except that of the last stage. This synchronization
station represents the synchronization between a stage-i finished part and a stage-
(i+1) free kanban. Let PAi and DAi+1 denote the two queues of Ji. PAi represents
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Fig. 2. Queueing network model of the echolon kanban control system of Figure 1
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the output buffer of stage i and contains stage-i finished parts, each of which has
attached to it a kanban from each stage from 1 to i. DAi+1 contains demands for
the production of new stage-(i + 1) parts, each of which has attached to it a stage-
(i + 1) kanban. The synchronization station operates as follows. As soon as there
is one entity in each queue PAi and DAi+1, the stage-i finished part engages the
stage-(i + 1) kanban without releasing the kanbans from stages 1 to i that were
already attached to it, and joins the first station of stage i + 1. Note that at stage
1, as soon as a stage-1 kanban is available, a new part is immediately released into
stage 1 since there are always raw parts at the input of the system.

Let us now consider the last synchronization station JN (J3 in the example). JN

synchronizes queues PAN , and DN+1. PAN represents the output buffer of stage
N and contains stage-N finished parts, each of which has attached to it a kanban
from each stage from 1 to N . DN+1 contains customer demands. When a customer
demand arrives to the system, it joins DN+1, thereby demanding the release of a
finished part from PAN to the customer. If there is a finished part in queue PAN ,
it is released to the customer and the demand is satisfied. In this case, the finished
part in PAN releases the kanbans that were attached to it, and these kanbans are
transferred upstream to queues DAi (i = 1, . . ., N). The kanban of stage i carries
along with it a demand for the production of a new stage-i(i = 1, . . ., N) finished
part and an authorization for the release of a finished part from queue PAi−1 into
stage i. If there are no finished parts in queue PAN , the customer demand remains
on hold in DN+1 as a backordered demand.

An important special case of the echelon kanban control system in the case
where there are always customer demands for finished parts. This case is known
as the saturated echelon kanban control system. Its importance lies in the fact that
its throughput determines the maximum capacity of the system. In the saturated
system, when there are finished parts at stage N , they are immediately consumed
and an equal number of parts enter the system. As far as the queueing network
corresponding to this model is concerned, the synchronization station JN can be
eliminated since queue DN+1 is never empty and can therefore be ignored. In
the saturated echelon kanban control system, when the processing of a part is
completed at stage N , this part is immediately consumed after releasing the kanbans
of stages 1,. . . , N that were attached to it and sending them back to queues DAi(i =
1, . . ., N).

It is worth noting that the echelon kanban control system contains the make-
to-stock CONWIP system [23] as a special case. In the make-to-stock CONWIP
system, as soon as a finished part leaves the production system to be delivered to a
customer, a new part enters the system to begin its processing. An echelon kanban
control system with K1 ≤ Ki, i /= 1, behaves exactly like the make-to-stock
CONWIP system.

The dynamic behavior of the echelon kanban control system depends on the
manufacturing processes, the arrival process of customer external demands, and
the number of echelon kanbans of each stage. Among the performance measures
that are of particular interest are the average work in process (WIP) and the average
number of finished parts in each stage, the average number of backordered (not
immediately satisfied) demands, and the average waiting time and percentage of
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backordered demands. In the case of the saturated echelon kanban control system,
the main performance measure of interest is its production rate, Pr, i.e. the average
number of finished parts leaving the output buffer of stage N per unit of time. Pr

represents the maximum rate at which customer demands can be satisfied. With this
in mind, the average arrival rate of external customer demands in the unsaturated
system, say λD, must be strictly less than Pr in order for the system to meet all the
demands in the long run. In other words, the stability condition for the unsaturated
system is

λD < Pr. (2)

4 Decomposition of the echelon kanban control system

To evaluate the performance of the multi-stage, serial, echelon kanban control
system, we decompose the system into many nested, single-stage subsystems and
analyze each system in isolation. The susbsystems are nested in each other in such
a way that each subsystem includes its downstream subsystem in the form of a
single-server station and receives external arrivals from its upstream subsystem.
The first subsystem mimics the original system. To analyze each subsystem, we
view it as a closed queueing network and we approximate each station of this
network by an exponential-service station with load-dependent service rates. The
resulting network is a product-form network. A fixed-point iterative procedure is
then used to determine the unknown parameters of each subsystem by taking into
account the interactions between neighboring subsystems. A detailed description
of the decomposition follows.

Consider the queueing network model of an echelon kanban control system
consisting of N stages in series as described in Section 3 (see Fig. 2 for N = 3). Let
us denote the queueing network of the system by R. Our goal is to analyze R by
decomposing it into a set of N nested subsystems, Ri, i = 1, . . ., N . This is done
as follows (see Fig. 3 for N = 3).

Subsystem RN (R3 in the example) is an open queueing network with restricted
capacity consisting of 1) an upstream synchronization station, denoted by IN ,
representing JN−1 in the original system, 2) the subnetwork of stations LN of
the original system, and 3) a downstream synchronization station, denoted by ON ,
representing JN in the original system. Each subsystem Ri, i = 2, . . ., N − 1, is
an open queueing network with restricted capacity consisting of 1) an upstream
synchronization station, denoted by Ii, representing Ji−1 in the original system,
2) the subnetwork of stations Li of the original system, and 3) a downstream
single-server pseudo-station, denoted by Ŝi, representing the part of the system
downstream of Li in the original system. Finally, subsystem R1 is a closed queueing
network consisting of 1) the subnetwork of stations L1 of the original system, and
2) a downstream single-server pseudo-station, denoted by Ŝ1, representing the part
of the system downstream of L1 in the original system. Note that pseudo-station
Ŝi in subsystem Ri, i = 1, . . ., N − 1, is an aggregate representation of subsystem
Ri+1.

The number of echelon kanbans of subsystem Ri is Ki. Subsystem RN is syn-
chronized with two external arrival processes, one at synchronization station IN
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Fig. 3. Illsutration of the decomposition of a 3-stage echolon kanban control system

concerning parts that arrive from subnetwork LN−1, and the other at synchroniza-
tion station ON concerning customer demands. Subsystem Ri, i = 2, . . ., N − 1,
is synchronized with only one external arrival process at synchronization station
Ii concerning parts that arrive from subnetwork Li−1. Subsystem R1 is a closed
network; therefore it is not synchronized with any external arrival processes. As
can be seen from Table 3, each synchronization station Ji of the original network
R, linking stage i to stage i + 1, is represented only once in the decomposition.

To completely characterize each subsystem Ri, i = 2, . . ., N , we assume that
each of the external arrival processes to Ri is a state-dependent, continuous-time
Markov process. Let λi(ni) denote the state-dependent arrival rate of stage-i raw
parts at the upstream synchronization station Ii of subsystem Ri, where ni is the
state of subsystem Ri and is defined as the number of parts in this subsystem.
Let Qi

u and Qi
I be the two queues of synchronization station Ii, containing ni

u

and ni
I customers, respectively, where ni

u is the number of finished parts of stage
i-1 waiting to enter subnetwork Li, and ni

I is the number of free stage-i kanbans
waiting to authorize the release of stage-(i − 1 <) finished parts into subnetwork
Li. Then, it is clear that the only possible states of the synchronization station are
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the states (ni
I , 0), for ni

I = 0, . . ., Ki, and (0, ni
u), for ni

u = 0, . . ., Ki−1 − Ki;
therefore, the state ni of subsystem Ri can be simply obtained from ni

u and ni
I

using the following relation:

ni =

{
Ki − ni

I if ni
I /= 0,

Ki + ni
u if ni

I = 0.
(3)

The above relation implies that 0 ≤ ni ≤ Ki−1. Also, since the number of raw
parts at the input of stage i cannot be more than the number of stage-(i−1) kanbans,
λi (Ki−1) = 0. In subsystem RN , besides the arrival rate of stage-N raw parts at
IN , λN (nN ), there is also the external arrival rate of customer demands at ON ,
λD. Subsystem R1, as was mentioned above, is a closed network and therefore has
no external arrival processes to define.

To obtain the performance of the original network R, the following two prob-
lems must be addressed: 1) How to analyze each subsystem Ri, i = 1, . . ., N ,
assuming that the external arrival rates are known (except in the case of the first
subsystem R1, where there are no external arrivals), and 2) how to determine the
unknown external arrival rates. These two problems are addressed in Sections 5
and 6, respectively. Once these two problems have been solved, the performance
of each stage of the original network R can be obtained from the performances of
subsystems Ri, i = 1, . . ., N .

5 Analysis of each subsystem in isolation

In this section, we describe how to analyze each subsystem in isolation using Marie’s
approximate analysis of general closed queueing networks [20]. Throughout this
analysis, the state-dependent rates of the external arrival processes, λi(ni), 0 ≤
ni ≤ Ki−1, i = 2, . . ., N , are assumed to be known. To analyze each subsystem
using Marie’s method, we first view the subsystem as a closed queueing network.
For subsystems Ri, i = 2, . . ., N , this is done by considering the kanbans of stage
i as the customers of the closed network, and the parts and demands (in the case of
the last subsystem RN ) as external resources. Note that the queueing network asso-
ciated with subsystem R1 is already being modeled as a closed queueing network
in the decomposition. Its customers are the kanbans of stage 1.

The closed queueing network associated with subsystem RN is partitioned
into mN + 2 stations, namely, the synchronization stations IN and ON and the
mN stations of subnetwork LN . Similarly, the closed queueing network asso-
ciated with each subsystem Ri is partitioned into mi + 2 stations, namely, the
synchronization station Ii, the mi stations of subnetwork Li, and station Ŝi. Fi-
nally, the closed queueing network associated with subsystem R1 is partitioned into
m1+1 stations, namely, the m1 stations of subnetwork L1, and station Ŝ1. Each sta-
tion is approximated by an exponential-service station with load-dependent service
rates. The resulting network associated with each subsystem is a Gordon-Newell,
product-form network [17] consisting of Ki customers and mi + 2 stations for
subsystems Ri, i = 2, . . ., N , and m1 + 1 stations for subsystem R1. The stations
within each subsystem Ri, i = 1, . . ., N , will be denoted by the index k ∈ Mi,
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where M1 = {1, . . ., m1, Ŝ}, Mi = {I, 1, . . ., mi, Ŝ} for i = 2, . . ., N − 1, and
MN = {I, 1, . . ., mN , O}.

Let µi
k(ni

k) denote the load-dependent service rate of station k in the product-
form network of subsystem Ri when there are ni

k customers in that station. We will
show how to determine µi

k(ni
k), ni

k = 1, . . . , Ki, for each station k ∈ Mi within a
particular subsystem Ri, i = 1, . . ., N . The method for doing this is the same for
all subsystems Ri, i = 1, . . ., N ; therefore, for the sake of notational simplicity we
will drop index i that denotes variables associated with subsystem Ri.

Let vector n = (nk, k ∈ M) be the state of the closed, product-form network,
where nk denotes the number of customers present at station k. Then, the probability
of being in stage n, P (n), is given by the following product-form solution [12]:

P (n) =
1

G(K)

∏
k∈M

[
nk∏

n=1

Vk

µk(n)

]
, (4)

where Vk is the average visit ratio of station k in the original system and is given
from the routing matrix of the original system, and G(K) is the normalization
constant.

To determine the unknown parameters µk(nk), nk = 1, . . ., K, for each station
k ∈ M , in the product-form solution (4), each station is analyzed in isolation
as an open system with a state-dependent, Poisson arrival process, whose rate
λk(nk) depends on the total number of customers, nk, present in the station. Let
Tk denote this open system. Assume that the rates λk(nk) are known for nk =
1, . . ., K − 1. The open queueing system Tk can then be analyzed in isolation
using any appropriate technique to obtain the steady-state probabilities of having
nk customers in the isolated system, say Pk(nk). The issue of analyzing each
queueing system Tk in isolation will be discussed immediately after Algorithm 1,
below. Once the probabilities Pk(nk) are known, the conditional throughput of Tk

when its population is nk, which is denoted by vk(nk), can be derived using the
relation [12],

vk(nk) = λk(nk − 1)
Pk(nk − 1)

Pk(nk)
, for nk = 1, . . ., K. (5)

The load-dependent service rates of the k-th station of the closed product-form
network are then set equal to the conditional throughputs of the corresponding open
station in isolation, i.e.:

µk(nk) = vk(nk), for nk = 1, . . ., K. (6)

Once the rates µk(nk) have been obtained, the state-dependent arrival rates
λk(nk) can be obtained from the generalized, product-form solution as [6,12]:

λk(nk) = Vk
Gk(K − nk − 1)

Gk(K − nk)
, for nk = 1, . . ., K − 1, and λk(K) = 0, (7)

whereGk(n) is the normalization constant of the closed, product-form network with
station k removed (complementary network) and population n. Gk(n) is a function
of the parameters µk′(nk′) for all k′ /= k and nk′ = 1, . . ., K, and can be computed
efficiently using any computational algorithm for product-form networks [6,9]. An
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iterative procedure can then be used to determine these unknown quantities. This
procedure is described by the following algorithm.

Algorithm 1: Analysis of a Subsystem in Isolation.

Step 0. (Initialization) Set µk(nk) to some initial value, for k ∈ M and nk =
1, . . ., K.

Step 1. For k ∈ M :
Calculate the state-dependent arrival rates λk(nk), for nk = 0, . . ., K−1, using

(7).

Step 2. For k ∈ M :

1. Analyze the open queueing system Tk.
2. Derive the steady state probabilities Pk(nk) of having nk customers, for nk =

1, . . ., K.
3. Calculate the conditional throughputs vk(nk), for nk = 1, . . ., K, using (5).

Step 3. For k ∈ M :
Set the load-dependent service rates µk(nk), for nk = 1, . . ., K, in the closed,

product-form network using (6).

Step 4. Go to Step 1 until convergence of the parameters µk(nk).

Next, we show how to analyze each open queueing system Tk. To do this, we
reintroduce index i to denote subsystem Ri. Step 2.1 of Algorithm 1 above requires
the analysis of the open queueing systems T i

k for k ∈ Mi and i = 1, . . ., N .
There are four different types of queueing systems: 1) the synchronization station
ON in subsystem RN , 2) the synchronization stations Ii in subsystems Ri, i =
2, . . ., N, 3) the mi stations in each subnetwork Li, i = 1, . . ., N , and 4) the pseudo-
stations Ŝi in subsystems Ri, i = 1, . . ., N − 1.

First, consider the analysis of synchronization station ON in subsystem RN .
ON is a synchronization station fed by a continuous-time Markov arrival process
with state-dependent rates, λN

O (nN
O ), 0 ≤ nN

O ≤ KN , and an external Poisson
process with fixed rate λD. An exact solution for this system is easy to obtain by
solving the underlying continuous-time Markov chain. Namely, the steady-state
probabilities PN

O (nN
O ) of having nN

O customers in subsystem ON can be derived,
and the conditional throughput vN

O (nN
O ) can be estimated using (5) (see [11] and

Appendix A).
The synchronization station Ii in each subsystem Ri, i = 2, . . ., N , is a syn-

chronization station fed by two continuous-time Markov arrival processes with
state-dependent rates, λi

I(n
i
I), 0 ≤ ni

I ≤ Ki, and λi(ni), 0 ≤ ni ≤ Ki−1. An
exact solution for this system is also easy to obtain by solving the underlying
continuous-time Markov chain. (see [14] and Appendix B).

The analysis in isolation of any station k ∈ {1, . . ., mi} in each subnetwork
Li, i = 1, . . ., N , reduces to the analysis of a λi

k(ni
k)/Gi/1/N queue. Classical

methods can be used to analyze this queue to obtain the steady-state probabilities
P i

k(ni
k). For instance, if the service time distribution is Coxian, the algorithms

given in [21] may be used. For multiple-server stations, we can use the numerical
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technique presented in [26]. The conditional throughput vi
k(ni

k) can then be derived
from the state probabilities using (5). In the special case where the service time is
exponentially distributed, the conditional throughput vi

k(ni
k) is simply equal to the

load-dependent service rate µi
k(ni

k) [12].
Finally, as was mentioned earlier, pseudo-station Ŝi in subsystem Ri, i =

1, . . ., N − 1, is an aggregate representation of subsystem Ri+1, which is nested
inside subsystem Ri. Therefore, the conditional throughput of pseudo-station Ŝi,
vi

Ŝ
(ni

Ŝ
), is set equal to the conditional throughput of subsystem Ri+1. The condi-

tional throughput of any subsystem Ri, i = 2, . . ., N , is denoted by vi(ni) and can
be estimated by the following simple expression [3]:

vi(ni) =

{
λi

I(Ki − ni) for 1 ≤ ni ≤ Ki,

λi
I(0) for Ki ≤ ni ≤ Ki−1.

(8)

6 Analysis of the entire echelon kanban control system

In Section 5 we analyzed each subsystem of the decomposition in isolation, given
that the arrival rates of the external arrival processes were known. In this section,
we show how to determine these arrival rates.

Consider again the queueing network of the original system,R, which was de-
composed into N subsystems (see Fig. 3 for N = 3). In each subsystem Ri,
i = 2, . . ., N , the unknown parameters involved in the decomposition are the ar-
rival rates of raw parts at each upstream synchronization station Ii, λi(ni), 0 ≤
ni ≤ Ki−1. Recall that pseudo-station Ŝi−1 in subsystem Ri−1 represents sub-
system Ri, i = 2, . . ., N ; therefore, the external arrival process of raw parts at
synchronization station Ii in subsystem Ri should be identical to the arrival pro-
cess of parts at pseudo-station Ŝi−1 in subsystem Ri−1. The latter process was
involved in the analysis of subsystem Ri−1 in isolation and was modeled as a state-
dependent Poisson arrival process with rate λi−1

Ŝ
(ni−1

Ŝ
), 0 ≤ ni−1 ≤ Ki−1. As a

result, the following set of equations holds:

λi(ni) = λi−1
Ŝ

(ni−1
Ŝ

) for 0 ≤ ni = ni−1
Ŝ

≤ Ki−1 and i = 2, . . ., N. (9)

Equation (9) implies that the unknown parameters λi(ni) are the solutions of a
fixed-point problem. To determine these quantities we use an iterative procedure.
This procedure is given by Algorithm 2 below. Algorithm 2 consists of several
forward and backward steps. A forward step from subsystem Ri−1 to Ri uses
new estimates of the arrival rates to the upstream synchronization station Ii of
subsystem Ri, λi(ni), to resolve Ri using Algorithm 1. A backward step from
Ri to Ri−1 solves Ri−1 using Algorithm 1, given that the arrival rates λi(ni)
to the upstream synchronization station Ii of each subsystem Rj , j = i, . . ., N ,
have converged. The procedure starts with subsystem RN and moves backwards
until it reaches subsystem R1. Subsystem RN is analyzed first using Algorithm 1
and current estimates of λN (nN ). This yields the conditional throughput of RN ,
vN (nN ), which is needed to analyze subsystem RN−1, since it determines the load-
dependent exponential-service rates of pseudo-station ŜN−1. Subsystem RN−1
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is analyzed next using Algorithm 1 and current estimates of λN−1(nN−1). This
yields the conditional throughput ofRN−1,vN−1(nN−1), and the arrival rates to the
pseudo-station ŜN−1, λN−1

Ŝ
(nN−1

Ŝ
). If these arrival rates are not equal to the current

estimates of the arrival rates λN (nN ), then the latter rates have not converged. In this
case, the current estimates of λN (nN ) are updated to λN−1

Ŝ
(nN−1

Ŝ
) and subsystem

RN is analyzed again using Algorithm 1 with the new estimates. Otherwise, the
arrival rates λN (nN ) have converged and the procedure moves on to the analysis
of subsystem RN−2 using Algorithm 1, where the load-dependent exponential-
service rates of pseudo-station ŜN−2 are set equal to vN−1(nN−1). This procedure
is repeated for subsystemsRN−2,RN−3,. . . , until the first subsystem,R1, is reached
and all the arrival rates λi(ni), i = 2, ..., N , have converged. All the performance
parameters of interest can then be derived.

Algorithm 2: Analysis of a multi-stage echelon kanban control system.

Step 0. (Initialization) Set the unknown arrival rates of each subsystem Ri to some
initial values, e.g., λi(ni) = λD, 0 ≤ ni ≤ Ki−1, and i = 2, . . ., N .

Step 1. Computation and convergence of the arrival rates, λi(ni), i = 2, . . ., N .
Set i = N
While i ≥ 1

If i = N
Solve subsystem RN using Algorithm 1 and calculate the throughput

vN (nN ), nN = 1, . . ., KN−1, from (8).
Set i = i − 1.

Else
Solve subsystem Ri using Algorithm 1 and calculate the arrival rate λi

Ŝ
(ni

Ŝ
),

ni
Ŝ

= 0, . . . , Ki, and the throughput vi(ni), ni = 1, . . ., Ki−1, from (8).
If λi

Ŝ
(ni+1) = λi+1(ni+1), ni+1 = 0, . . . , Ki,

Set i = i − 1
Else

Set λi+1(ni+1) = λi
Ŝ
(ni+1), ni+1 = 0, . . . , Ki, and set i = i + 1

Endif
Endif

Endwhile
In the case of the saturated echelon kanban control system, we can use the

same algorithm. The only difference is in the analysis of subsystem RN in Al-
gorithm 1, where there is no downstream synchronization station ON . As far as
the convergence properties of Algorithms 1 and 2 are concerned, in all of the nu-
merical examples that we examined (see Sect. 7), both algorithms converged. The
convergence criterion was that the relative difference between the values of every
unknown parameter at two consecutive iterations should be less that 10−4.

Once Algorithm 2 has converged, all the performance parameters of the system
can be calculated. Indeed, from the analysis of each subsystem Ri using Algo-
rithm 1, it is possible to derive the performance parameters of stage i in the original
network R, especially the throughput and the average length of each queue, includ-
ing the queues of the synchronization stations. Thus, in the case of the saturated



352 S. Koukoumialos and G. Liberopoulos

echelon kanban system, we can derive the throughput, the average WIP, the average
number of finished parts, and the average number of free echelon kanbans for each
stage. In the case of the echelon kanban control system with external demands,
some other important performance measures can be derived from the analysis of
subsystem RN , namely, the proportion of backordered demands, pB , the average
number of backordered demands, QD, and the average waiting time of backordered
demands, WB . These performance measures can be derived as follows [11,14]:

pB = PN
O (0), QD = PN

O (0)
1

λN
O

(0)
λD

− 1
, WB =

QD

pBλD
,

where λN
O (0) is the arrival rate of finished parts at synchronization station ON when

there are no finished parts at that station and PN
O (0) is the steady-state probability

of having no finished parts at synchronization station ON .

7 Numerical results

In this section, we test the approximation method for the performance evaluation
of the echelon kanban control system that we developed in Sections 4–6 on sev-
eral numerical examples. The approximation method was implemented on an Intel
Celeron PC @ 433 MHz, and its results are compared to simulation results obtained
using the simulation software ARENA on an AMD Athlon PC @ 1400 MHz. For
each simulation experiment we run a single replication. The length of this replica-
tion was set equal to the time needed for the system to produce 68 million parts. The
initial condition of the system at the beginning of the replication was set to a typical
regenerative state, namely the state where all customer demands and demands for
the production of new parts at all stages have been satisfied. This permitted us to
set the warm-up period at the beginning of the replication equal to zero. In all simu-
lation experiments we used 95% confidence intervals. The numerical examples are
organized into Sections 7.1 and 7.2. In Section 7.1, we study the accuracy and ra-
pidity of the approximation method as well as the influence of some key parameters
of the echelon kanban control system on system performance. In Section 7.2, we
use the approximation method to optimize the design parameters (echelon kanbans)
of the system.

7.1 Influence of parameters

In this section, we test the accuracy and rapidity of the approximation method
with two numerical examples in which we vary the number of stages, the number
of kanbans in each stage, and the service-time distributions of the manufacturing
process of each stage. For each example, we consider first the case of the saturated
system and then the case of the system with external demands. In each example,
we compare the performance of the system obtained by the approximation method
to that obtained by simulation. We also compare the performance of the echelon
kanban control system obtained by the approximation method and by simulation to
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Table 1. Production capacity of the saturated echelon kanban control system (Example 1)

Simulation Approximation

Configuration Production Confidence Production Relative Iterations
capacity interval capacity error

1.1: N = 3; K = 1 0.581 ±0.1% 0.571 −1.8% 7
1.2: N = 3; K = 3 0.809 ±0.1% 0.804 −0.6% 7
1.3: N = 3; K = 5 0.877 ±0.2% 0.873 −0.5% 7
1.4: N = 3; K = 10 0.934 ±0.5% 0.933 −0.1% 7
1.5: N = 3; K = 15 0.955 ±0.6% 0.954 −0.1% 7
1.6: N = 5; K = 1 0.522 ±0.0009% 0.502 −4% 16
1.7: N = 5; K = 3 0.772 ±0.1% 0.761 −1.4% 16
1.8: N = 5; K = 5 0.850 ±0.1% 0.843 −0.8% 16
1.9: N = 5; K = 10 0.919 ±0.2% 0.916 −0.3% 16
1.10: N = 5; K = 15 0.945 ±0.0009% 0.942 −0.3% 16
1.11: N = 10; K = 1 0.485 ±0.0007% 0.456 −6.4% 56
1.12: N = 10; K = 3 0.745 ±0.5% 0.730 −2.1% 56
1.13: N = 10; K = 5 0.831 ±0.7% 0.820 −1.3% 56
1.14: N = 10; K = 10 0.908 ±0.1% 0.902 −0.7% 56
1.15: N = 10; K = 15 0.937 ±0.1% 0.933 −0.4% 56

the performance of the conventional or installation kanban control system obtained
by a similar approximation method developed in [14] and by simulation.

Example 1. In Example 1, we consider an echelon kanban system composed of
N identical stages, where each stage contains a single machine with exponentially
distributed service times with mean equal to 1. In order to compare the echelon
kanban control system to the conventional kanban control system, we first set the
number of installation kanbans of each stage i in the conventional kanban control
system, say Kc

i , equal to some constant, K, i.e. Kc
i = K. Then, we set the number

of echelon kanbans of each stage i in the echelon kanban control system, say Ke
i ,

equal to the sum of the installation kanbans of stages i, . . ., N , in the conventional
kanban control system, i.e. Ke

i =
∑N

j=i Kc
j = (N + 1 − i)K.

For the case of the saturated system, the main performance parameter of interest
is the throughput of the system, which determines the production capacity of the
system. Table 1 shows the throughput of the saturated echelon kanban control
system obtained by the approximation method and by simulation, for different
values of N and K. The same table also shows the 95% confidence interval for
the simulation results, the percentage of relative error of the approximation method
with respect to simulation, and the number of iterations of Algorithm 2 that are
needed to reach convergence. Table 2 shows the same results for the conventional
kanban control system obtained in [14].

From the results in Table 1, we note that the number of iterations of Algorithm 2
of the approximation method increases with the number of stages, as is expected.
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Table 2. Production capacity of the saturated conventional kanban control system (Exam-
ple 1)

Simulation Approximation

Configuration Production Confidence Production Relative Iterations
capacity interval capacity error

1.1: N = 3; K = 1 0.562 ±0.5% 0.547 −2.7% 2
1.2: N = 3; K = 3 0.800 ±0.7% 0.792 −1.0% 2
1.3: N = 3; K = 5 0.869 ±1.3% 0.865 −0.5% 2
1.4: N = 3; K = 10 0.926 ±0.8% 0.928 +0.2% 2
1.5: N = 3; K = 15 0.952 ±1.2% 0.951 −0.1% 2
1.6: N = 5; K = 1 0.484 ±0.6% 0.449 −7.0% 4
1.7: N = 5; K = 3 0.746 ±0.8% 0.731 −2.0% 4
1.8: N = 5; K = 5 0.833 ±0.8% 0.822 −1.3% 4
1.9: N = 5; K = 10 0.901 ±1.2% 0.904 +0.3% 4
1.10: N = 5; K = 15 0.943 ±1.1% 0.934 −0.9% 4
1.11: N = 10; K = 1 0.429 ±0.5% 0.379 −11.6% 7
1.12: N = 10; K = 3 0.704 ±0.7% 0.680 −3.4% 6
1.13: N = 10; K = 5 0.806 ±0.9% 0.786 −2.6% 5
1.14: N = 10; K = 10 0.855 ±0.5% 0.883 −3.2% 5
1.15: N = 10; K = 15 0.917 ±1.3% 0.919 +0.2% 5

Specifically, for N = 3, 5, and 10, we have 7, 16, and 56 iterations of Algorithm 2,
respectively. As far as the convergence of Algorithm 1 is concerned, we also note
that subsystem RN requires two iterations of Algorithm 1, subsystem R1 requires
one iteration, and all other subsystems require three iterations, irrespectively of the
number of stages N , for all the configurations tested. The simulation time is ex-
tremely long (over two hours) compared to the time required for the approximation
method, which is approximately 1–10 seconds. From Table 1, we see that as the
number of echelon kanbans increases, for a given number of stages N , the through-
put also increases and asymptotically tends to the production rate of each machine
in isolation. Moreover, the throughput seems to be decreasing in the number of
stages. The results obtained by the approximation method are fairly accurate when
compared to the simulation results. The relative error is very small in general except
for the cases where K = 1, where we observe somewhat significant errors. This
happens because when the number of echelon kanbans is small, there are strong
dependence phenomena among stations and these phenomena are not captured well
by the state-dependent, continuous-time, Markov arrival processes assumed in the
decomposition method. Comparing the results between Tables 1 and 2, we note that
the production capacity of the echelon kanban control system is always higher than
that of the conventional kanban control system, given that the two systems have the
same value of K.
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For the system with backordered demands, the main performance parameters
of interest are the proportion of backordered demands, pB , the average number of
backordered demands, QD, and the average waiting time of backordered demands,
WB , as defined at the end of Section 6. Table 3 shows these performance parameters
obtained by the approximation method and by simulation, for the configurations of
parameters 1.3, 1.8, and 1.13 of Table 1, i.e. for K = 5, and different values of the
customer demand rate, λD. The same table also shows the 95% confidence interval
for the simulation results and the number of iterations of Algorithm 2 that are
needed to reach convergence. Table 4 shows the same results for the conventional
kanban control system obtained in [14].

From the results in Table 3, we note that as the customer demand arrival rate
increases, the number of iterations of Algorithm 2 also increases, though not dra-
matically. As far as the average number of backordered demands, QD, is concerned,
we note that the analytical method is fairly accurate. This is not true for the average
waiting time of backordered demands, WB , where in some cases the difference
between the approximation method and simulation are significant. Comparing the
results between Tables 3 and 4, we note that the echelon kanban control system
always has a smaller average number of backordered demands, QD, than the con-
ventional kanban control system, given that the two systems have the same value
of K. The difference in the average number of backordered demands is more pro-
nounced when the two systems are highly loaded, i.e. when λD is close to the
production capacity.

Table 5 shows the results for the average number of finished parts (FP) and the
average work-in-process (WIP) at each stage for the configurations of parameters
1.17 and 1.19 in Table 3. Table 6 shows the same results for the conventional kanban
control system.

Comparing the results between Tables 5 and 6, we note that the echelon kanban
control system has slightly higher average WIP and lower FP than the conventional
kanban control system, when the two systems are highly loaded (i.e. λD is close
to Pr), and given that the two systems have the same value of K. When the two
systems are not highly loaded, the difference in average WIP and FP between the
two systems is very small. Finally, it appears that the difference in average WIP
and FP between the echelon kanban control system and the conventional kanban
control system is higher in upstream stages than in downstream stages.

Although the above observations hold for the particular configurations of pa-
rameters examined, we expect that they should also hold for the other configurations
of Table 1 and different values of the customer demand rate, λD, because to a large
extent they are due to the fact that the echelon kanban control system always re-
sponds faster to customer demands than the conventional kanban control system,
given that the two systems have the same value of K.

Finally, we should note that the approximation method for the performance
evaluation of the conventional kanban control system developed in [14] is also
based on decomposing a system of N stages into N subsystems. The total number
of the unknown parameter sets (the arrival rates of the external arrival processes
to the subsystems) that must be determined for the conventional kanban control
system, however, is twice as big as that which must be determined for the echelon
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Table 3. Average number of backordered demands, average waiting time of backordered de-
mands, and proportion of backordered demands for the echelon kanban system (Example 1)

Configuration QD WB pB (%) Iterations

1.16: N = 3; K = 5; λD = 0.1
Approximation 0.0 0.0 0.0 6
Simulation 0.0 0.0 0.0

1.17: N = 3; K = 5; λD = 0.5
Approximation 0.035 4.069 1.729 7
Simulation 0.034 (±0.9%) 2.066 (±1.2%) 3.337

1.18: N = 3; K = 5; λD = 0.625
Approximation 0.221 4.594 7.687 7
Simulation 0.213 (±0.1%) 3.014 (±14.2%) 11.32

1.19: N = 3; K = 5; λD = 0.8
Approximation 4.176 10.791 48.38 8
Simulation 4.095 (±3.6%) 9.755 (±7%) 52.47

1.20: N = 5; K = 5; λD = 0.1
Approximation 0.0 0.0 0.0 16
Simulation 0.0 0.0 0.0

1.21: N = 5; K = 5; λD = 0.5
Approximation 0.035 4.070 1.71 16
Simulation 0.032 (±0.007%) 3.189 (±0.003%) 2.03

1.22: N = 5; K = 5; λD = 0.8
Approximation 6.774 14.440 58.69 22
Simulation 6.5686 (±0.08%) 12.895 (±0.02%) 63.67

1.23: N = 10; K = 5; λD = 0.1
Approximation 0.0 0.0 0.0 20
Simulation 0.0 0.0 0.0

1.24: N = 10; K = 5; λD = 0.5
Approximation 0.035 4.070 1.72 39
Simulation 0.023 (±0.005%) 3.512 (±0.002%) 1.28

1.25: N = 10; K = 5; λD = 0.77
Approximation 3.817 10.709 46.3 61
Simulation 3.131 (±0.003%) 9.064 (±0.001%) 49.3

kanban control system (namely, there are 2(N − 1) external arrival rates for the
conventional kanban control system compared to N − 1 external arrival rates for
the echelon kanban control system). Yet, for both examples examined, the number
of iterations needed for the convergence of the parameters is significantly lower for
the conventional kanban control system than for the echelon kanban control system,
given the same convergence criterion for the two systems, as can be seen from Tables
1–4. This is due to the fact that the coordination of production is decentralized in
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Table 4. Average number of backordered demands, average waiting time of backordered
demands, amd proportion of backordered demands for the conventional kanban control
system (Example 1)

Configuration QD WB pB (%) Iterations

1.16: N = 3; K = 5; λD = 0.1
Approximation 0.0 0.0 0.0 1
Simulation 0.0 0.0 0.0

1.17: N = 3; K = 5; λD = 0.5
Approximation 0.035 2.06 3.4 2
Simulation 0.033 (±30%) 2.16 (±17%) 3.1

1.18: N = 3; K = 5;
λD = 0.625 Approximation 0.222 3.00 11.82 3
Simulation 0.230 (±17%) 3.26 (±15%) 11.78

1.19: N = 3; K = 5; λD = 0.8
Approximation 4.56 10.1 56.3 4
Simulation 4.26 (±19%) 10.3 (±13%) 52.1

1.20: N = 5; K = 5; λD = 0.1
Approximation 0.0 0.0 0.0 1
Simulation 0.0 0.0 0.0

1.21: N = 5; K = 5; λD = 0.5
Approximation 0.0353 2.07 3.40 2
Simulation 0.038 (±30%) 2.16 (±9%) 3.58

1.22: N = 5; K = 5; λD = 0.8
Approximation 11.26 19.3 73.0 7
Simulation 8.93 (±22%) 17.2 (±15%) 65.2

1.23: N = 10; K = 5; λD = 0.1
Approximation 0.0 0.0 0.0 1
Simulation 0.0 0.0 0.0

1.24: N = 10; K = 5; λD = 0.5
Approximation 0.0353 2.07 3.40 2
Simulation 0.0368 (±30%) 2.18 (±17%) 3.38

1.25: N = 10; K = 5; λD = 0.77
Approximation 6.89 13.9 64.2 11
Simulation 5.95 (±22%) 13.7 (±14%) 56.9

the conventional kanban control system, whereas it is centralized in the echelon
kanban control system. Nonetheless, this does not seem to constitute a noticeable
disadvantage of the approximation method for the echelon kanban control system,
since for all the cases examined, the method converges in a matter of 1–10 seconds.

Example 2. In Example 2, we consider an echelon kanban control system con-
sisting of N = 3 identical stages, where each stage contains a single machine with
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Table 5. Average work in progress (WIP) and average number of finished parts (FP) in each
stage for the echelon kanban control system (Example 1)

Configuration Stage 1 Stage 2 Stage 3

WIP FP WIP FP WIP FP

1.17: N = 3; K = 5; λD = 0.5
Simulation 0.988 4.039 0.978 4.022 0.961 4.011

(±0.1%) (±0.09%) (±0.1%) (±0.1%) (±0.1%) (±0.1%)
Approximation 0.999 4.031 0.995 4.005 0.969 4.000
Error +1.1% −0.2% +1.7% −0.4% +0.8% −0.3%

1.19: N = 3; K = 5; λD = 0.8
Simulation 3.363 2.392 3.068 2.018 2.589 1.569

(±0.5%) (±0.3%) (±0.3%) (±0.3%) (±0.3%) (±0.5%)
Approximation 3.479 2.349 3.159 1.902 2.655 1.455
Error +3.3% −1.8% +2.9% −6.1% +2.5% −7.8%

Table 6. Average work in progress (WIP) and average number of finished products (FP) in
each stage for the conventional kanban control system (Example 1)

Configuration Stage 1 Stage 2 Stage 3

WIP FP WIP FP WIP FP

1.17: N = 3; K = 5; λD = 0.5
Simulation 0.94 4.06 0.95 4.02 0.94 4.04

(±3.2%) (±0.7%) (±3.1%) (±0.7%) (±3.2%) (±0.8%)
Approximation 0.97 4.03 0.97 4.01 0.97 4.00
Error +3% −0.7% +2% −0.2% +3% −1%

1.19: N = 3; K = 5; λD = 0.8
Simulation 2.54 2.47 2.52 1.98 2.55 1.58

(±3.0%) (±4.0%) (±3.2%) (±5.0%) (±3.1%) (±6.3%)
Approximation 2.61 2.38 2.58 1.85 2.66 1.40
Error +2.7% −3.6% +2.4% −6.5% +4% −11%

mean service-time equal to 1. The number of echelon kanbans at each stage is
K1 = 15, K2 = 10, and K3 = 5. Our goal is to investigate the influence of the
variability of the service time on the performance of the above system. To this end,
we consider three different service-time distributions: a Coxian-2 distribution with
squared coefficient of variation cv2 = 2.0, an Erlang-2 distribution with cv2 = 0.5,
and an exponential distribution with cv2 = 1.0. Table 7 shows the production capac-
ity for the saturated echelon kanban control system obtained by the approximation
method and by simulation, for the three different distributions. Table 8 shows the
same results for the conventional kanban control system obtained in [14].
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Table 7. Production capacity of the echelon kanban control system (Example 2)

Simulation Approximation

Configuration Production Confidence Production Relative Iterations
capacity interval capacity error

2.1: N = 3; K = 5; cv2 = 0.5 0.929 ±0.1% 0.934 +0.5% 11
2.2: N = 3; K = 5; cv2 = 1 0.876 ±0.2% 0.873 −0.3% 7
2.3: N = 3; K = 5; cv2 = 2 0.813 ±0.3% 0.808 −0.6% 13

Table 8. Production capacity of the conventional kanban control system (Example 2)

Simulation Approximation

Configuration Production Confidence Production Relative Iterations
capacity interval capacity error

2.1: N = 3; K = 5; cv2 = 0.5 0.926 ±0.2% 0.932 +0.6% 2
2.2: N = 3; K = 5; cv2 = 1 0.870 ±0.1% 0.865 −0.6% 2
2.3: N = 3; K = 5; cv2 = 2 0.787 ±0.5% 0.786 −0.2% 2

From the results in Table 7, we note that when the variability of the service
time distribution increases, the production capacity decreases, as is expected. The
results obtained by the approximation method are fairly accurate when compared to
the simulation results. Comparing the results between Tables 7 and 8, we note that
for all the service-time distributions, the production capacity of the echelon kanban
control system is higher than that of the conventional kanban control system. The
results for the analytical solution and simulation for the case of the echelon kanban
system with backordered demands is shown in Figure 4. More specifically, Figure 4
depicts the proportion of backordered demands, pB , as a function of the arrival rate
of demands, λD, for the three different service time distributions. It appears that as
the cv2 of the service time distribution increases, the difference between simulation
and analytical results tends to increase.

7.2 Optimization of parameters

The main purpose of developing an approximation method for the performance
evaluation of the echelon kanban control system is to use it to optimize the design
parameters of the system. The design parameters of the echelon kanban control
system are the number of echelon kanbans for each stage. In order to optimize
these parameters, we must define a performance measure of the system. Typical
performance measures are those that include the cost of not being able to satisfy the
demands on time (i.e. quality of service) and the cost of producing parts ahead of
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Fig. 4. Proportion of backordered demands versus the average arrival rate of demands for
different values of the service-time squared coefficient of variation (Example 2)

time and, therefore, building up inventory (inventory holding cost). In this paper, we
consider an optimization problem where the objective is to meet a certain quality
of service constraint with minimum inventory holding cost.

We examine two quality-of-service measures as in [15]. The first measure is
the probability that when a customer demand arrives, it is backordered. The second
measure is the probability that when a customer demand arrives, it sees more than
nwaiting demands, excluding itself. The first measure is denoted by Prupt and con-
cerns the situation where the demands must be immediately satisfied. The second
measure is denoted by P (Q > n) and concerns the situation where we have the
prerogative to introduce a delay in filling orders, which is equivalent to authorizing
demands to wait. Specifically, Prupt is the marginal stationary probability of having
no finished parts in the last synchronization station, which is given by equation (18)
in Appendix A. Similarly, P (Q > n) is the stationary probability of having more
than n customers waiting and can be computed from the following expression:

P (Q > n) =
∞∑

x=n+1

P (Q = x) = 1 −
n∑

y=0

P (Q = y), (10)

where P (Q = n) is given by (see Appendix A):

P (Q = n) = pN
O (0, n) = pN

O (0, 0)
(

λD

λN
O (0)

)n

. (11)

The stationary distribution pN
O (0, 0) that is needed to evaluate both Prupt and

P (Q > n) is given by the following expression:

pN
O (0, 0) =

1

1
1− λD

λN
O

(0)

+
KN∑
x=1

( 1
λx

D

x−1∏
i=0

λN
O (i))

. (12)
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The cost function that we want to minimize is the long-run, expected, average cost
of holding inventory,

Ctotal =
N∑

i=1

hiE [WIPi + FPi], (13)

where hi is the unit cost of holding WIPi + FPi inventory per unit time in stage i.
In the remaining of this section, we optimize the echelon kanbans of an echelon

kanban control system consisting of N = 5 stages, where each stage contains a
single machine with exponentially distributed service times with mean equal to
1, for different combinations of inventory holding cost rates, hi, i = 1, . . ., 5,
and demand arrival rate λD = 0.5. In all cases we assume that there is value
added to the parts at every stage so that the inventory holding cost increases as
the stage increases, i.e. h1 < h2 < . . . < h5. If this were not the case, i.e. if
h1 = h2 = . . . = h5, then clearly it would make no sense to block the passage of
parts from one stage to another via the use of echelon kanbans, because this would
not lower the inventory holding cost but would worsen the quality of service. This
implies that if h1 = h2 = . . . = h5, the optimal echelon kanbans satisfy K1 ≤ Ki,
i = 2, . . ., 5, in which case the echelon kanban control system is equivalent to the
make-to-stock CONWIP system [23] with a WIP-cap on the total number of parts
in the system equal to K1.

Table 9 shows the optimal design parameters (K1, . . ., K5) and associated min-
imum, long-run, expected, average cost of holding inventory, for λD = 0.5 and
different quality of service constraints and inventory holding cost rates h1, . . ., h5,
where h1 < h2 < . . . < h5. The quality of service constraints that we use are
Prupt ≤ 0.02 and P (Q > n) ≤ 0.02, for n = 2, 5, 10.

From the results in Table 9, we see that the higher the number of backordered
demands n in the quality of service definition, P (Q > n), the lower the optimal
number of echelon kanbans, and hence the inventory holding cost. As the difference
between the holding cost rates hi, i = 1, . . ., 5, increases, the difference between the
optimal values of Ki, i = 1, . . ., 5, also increases, since the behavior of the echelon
kanban control system diverts further from that of the make-to-stock CONWIP
system. When the relative difference between the holding cost rates hi, i = 1, . . ., 5,
is low, the behavior of the echelon kanban control system tends to that of the make-
to-stock CONWIP system.

Table 10 shows the optimal design parameter K1 and associated minimum
inventory holding cost for λD = 0.5 and different quality of service constraints and
inventory holding cost rates h1, . . ., h5, for the make-to-stock CONWIP system.
The last column of Table 10 shows the relative increase in cost of the optimal
make-to-stock CONWIP system compared to the optimal echelon kanban control
system. Comparing the results between Tables 9 and 10, we note that the optimal
make-to-stock CONWIP system performs considerably worse than the optimal
echelon kanban control system, particularly when the relative difference between
the holding cost rates hi, i = 1, . . ., 5, is high and/or the number of backordered
demands n in the quality of service definition, P (Q > n), is high, indicating that
the quality of service is low.
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Table 9. Opimal configuration and associated costss for λD = 0.5 and different values of
h1, . . . , h5, for the echelon kanban control system

Design criterion K1 K2 K3 K4 K5 Cost

h1 = 1, h2 = 2, h3 = 3, h4 = 4, h5 = 5
Prupt ≤ 0.02 15 13 12 10 8 55.885
P (Q > 2) ≤ 0.02 13 11 10 8 7 46.555
P (Q > 5) ≤ 0.02 10 8 7 6 2 31.120
P (Q > 10) ≤ 0.02 7 6 5 3 1 20.253

h1 = 3, h2 = 8, h3 = 9, h4 = 10, h5 = 12
Prupt ≤ 0.02 15 13 12 10 8 144.314
P (Q > 2) ≤ 0.02 13 11 10 9 6 121.161
P (Q > 5) ≤ 0.02 10 8 7 6 2 84.074
P (Q > 10) ≤ 0.02 7 6 5 3 1 57.360

h1 = 1, h2 = 2, h3 = 4, h4 = 11, h5 = 12
Prupt ≤ 0.02 15 14 13 9 8 121.288
P (Q > 2) ≤ 0.02 14 13 10 7 6 98.890
P (Q > 5) ≤ 0.02 10 9 8 5 2 67.383
P (Q > 10) ≤ 0.02 8 6 4 3 1 39.483

h1 = 1, h2 = 6, h3 = 11, h4 = 16, h5 = 21
Prupt ≤ 0.02 17 13 11 10 8 218.702
P (Q > 2) ≤ 0.02 15 11 10 8 5 178.162
P (Q > 5) ≤ 0.02 10 8 7 6 2 115.601
P (Q > 10) ≤ 0.02 8 6 5 3 1 76.523

h1 = 1, h2 = 11, h3 = 21, h4 = 31, h5 = 41
Prupt ≤ 0.02 17 13 11 10 8 420.405
P (Q > 2) ≤ 0.02 15 11 10 8 5 341.324
P (Q > 5) ≤ 0.02 10 8 7 6 2 221.203
P (Q > 10) ≤ 0.02 8 6 5 3 1 145.047

h1 = 1, h2 = 2, h3 = 4, h4 = 8, h5 = 16
Prupt ≤ 0.02 17 15 12 9 7 143.879
P (Q > 2) ≤ 0.02 14 13 11 7 5 112.442
P (Q > 5) ≤ 0.02 10 8 7 6 2 65.843
P (Q > 10) ≤ 0.02 8 6 5 3 1 39.934

h1 = 1, h2 = 3, h3 = 9, h4 = 27, h5 = 81
Prupt ≤ 0.02 19 17 14 10 6 633.178
P (Q > 2) ≤ 0.02 17 15 12 8 4 471.867
P (Q > 5) ≤ 0.02 12 10 8 6 1 231.446
P (Q > 10) ≤ 0.02 8 6 5 3 1 139.066
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Table 10. Optimal configuration and associated costs for λD = 0.5 and different values of
h1, . . . , h5, for the CONWIP system

Design criterion K1 Cost Relative cost increase

h1 = 1, h2 = 6, h3 = 11, h4 = 16, h5 = 21
Prupt ≤ 0.02 14 244.163 10.43%
P (Q > 2) ≤ 0.02 12 202.415 11.98%
P (Q > 5) ≤ 0.02 10 161.006 28.2%
P (Q > 10) ≤ 0.02 8 120.307 36.39%

h1 = 1, h2 = 11, h3 = 21, h4 = 31, h5 = 41
Prupt ≤ 0.02 14 474.326 11.37%
P (Q > 2) ≤ 0.02 12 392.830 13.11%
P (Q > 5) ≤ 0.02 10 312.012 29.1%
P (Q > 10) ≤ 0.02 8 232.613 37.64%

h1 = 1, h2 = 2, h3 = 4, h4 = 8, h5 = 16
Prupt ≤ 0.02 14 175.160 17.86%
P (Q > 2) ≤ 0.02 12 143.407 21.59%
P (Q > 5) ≤ 0.02 10 111.986 41.2%
P (Q > 10) ≤ 0.02 8 81.260 50.86%

h1 = 1, h2 = 3, h3 = 9, h4 = 27, h5 = 81
Prupt ≤ 0.02 14 850.927 25.59%
P (Q > 2) ≤ 0.02 12 690.358 31.65%
P (Q > 5) ≤ 0.02 10 531.715 56.47%
P (Q > 10) ≤ 0.02 8 377.102 63.12%

8 Conclusions

We developed an analytical, decomposition-based approximation method for the
performance evaluation of the echelon kanban control system and tested it on several
numerical examples. The numerical examples showed that the method is quite
accurate in most cases. They also showed that the echelon kanban control system
has some advantages over the conventional kanban control system. Specifically,
when the two systems have the same value of K, the echelon kanban control system
has higher production capacity, lower average number of backordered demands, but
only slightly higher average WIP and either slightly higher or slightly lower FP than
the conventional kanban control system. The numerical results also showed that as
the variability of the service time distribution increases, the production capacity of
the echelon kanban control system and the accuracy of the approximation method
decrease. Finally, we know that the optimized echelon kanban control system always
performs at least as well as the optimized make-to-stock CONWIP system since the
latter system is a special case of the first system. The numerical results showed that
in fact the superiority in performance of the echelon kanban control system over
that of the make-to-stock CONWIP system can be quite significant, particularly
when the relative increase in inventory holding costs from one stage to the next
downstream stage is high and/or the quality of service is low.
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Appendix A – Analysis of synchronization station ON

ON is a synchronization station fed by a continuous-time Markov arrival process
with state-dependent arrival rate λN

O (nN
O ), 0 ≤ nN

O < KN , and an external Poisson
process with rate λD. The underlying continuous-time Markov chain is shown in
Figure 5. The state of this Markov chain is (nN

O , nD), where is the number of
engaged kanbans and nD, nD ≥ 0, is the number of external resources (customer
demands) currently present in subsystem ON . Let pN

O (nN
O , nD) be the steady-state

probabilities of the Markov chain. These probabilities are solution of the following
balance equations:

Fig. 5. Continuous-time Markov chain describing the state (nN
0 , nD) of synchronization

station ON

pN
O (nN

O , 0)λD = pN
O (nN

O − 1, 0)λN
O (nN

O − 1) for nN
O = 1, ..., KN (14)

pN
O (0, nD)λN

O (0) = pN
O (0, nD − 1)λD for nD > 0 (15)

The marginal probabilities PN
O (nN

O ) are then simply given by

PN
O (nN

O ) = pN
O (nN

O , 0) for nN
O = 1, ..., KN , (16)

PN
O (0) =

∞∑
nD=0

pN
O (0, nD). (17)

From (15) and (17) we get

PN
O (0) =

∞∑
nD=0

pN
O (0, 0)

(
λD

λN
O (0)

)nD

= pN
O (0, 0)

1
1 − λD

λN
O

(0)

. (18)

The conditional throughputs of subsystem ON are obtained from (5), (14) and (16),
as follows:

vN
O (nN

O ) = λD for nN
O = 2, ..., KN (19)

From (5), (14), (16) and (18), we also get

vN
O (1) =

1
1

λD
− 1

λN
O

(0)

. (20)
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Appendix B – Analysis of synchronization station Ii

Ii, i = 2, . . ., N , is a synchronization station fed by two continuous-time Markov
arrival processes with state-dependent arrival rates: λi

I(n
i
I), 0 ≤ ni

I ≤ Ki, and
λi(ni), 0 ≤ ni ≤ Ki−1. The underlying continuous-time Markov chain is shown
in Figure 6. The state of this Markov chain is (ni

I , n
i
u), where ni

I is the number
of free kanbans and ni

u is the number of external resources (finished parts of stage
i−1) currently present in subsystem Ii. Recall that ni can be obtained from ni

u and
ni

I using (3). The steady-state probabilities pi
I(n

i
I , n

i
u) can be derived as solutions

of the underlying balance equations and are given by:

pi
I(n

i
I , 0) =


 ni

I∏
n=1

λi
I(n − 1)

λi(Ki − n)


 pi

I(0, 0), (21)

pi
I(0, ni

u) =

ni
u∏

n=1
λi(Ki + n − 1)

[
λi

I(0)
]ni

u
pi

I(0, 0). (22)

The marginal probabilities, P i
I (n

i
I), can then be derived by summing up the prob-

abilities above as follows:

P i
I (n

i
I) =


 ni

I∏
n=1

λi
I(n − 1)

λi(Ki − n)


 pi

I(0, 0) for ni
I = 1, . . . , Ki, (23)

P i
I (0) =


1 +

Ki−1−Ki∑
ni

u=1

ni
u∏

n=1
λi(Ki + n − 1)

[
λi

I(0)
]ni

u


 pi

I(0, 0). (24)

The estimation of the conditional throughputs of subsystem Ii can then be obtained
by substituting the above probabilities into (5), as follows:

vi
I(n

i
I) = λi(Ki − ni

I) for ni
I = 2, ..., Ki, (25)

Fig. 6. Continuous-time Markov chain describing the state (ni
I ,ni

u) of synchronization sta-
tion Ii
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vi
I(1) = λi(Ki − 1)


1 +

Ki−1−Ki∑
ni

u=1

ni
u∏

n=1
λi(Ki + n − 1)

[
λi

I(0)
]ni

u


 . (26)

Appendix C – Table of notation

N Number of stages
Ki Number of echelon kanbans of stage i
Li Subnetwork associated with the manufacturing process of stage i
mi Number of stations of subnetwork Li

Ji Synchronization station at the output of stage i
λD Average arrival rate of external customer demands in the unsaturated

system
Pr Maximum rate at which customer demands can be satisfied
R Queueing network of the echelon kanban control system
Ri Subsystem associated with stage i
Ii Upstream synchronization station of subsystem Ri

ON Downstream synchronization station of subsystem RN

Ŝi Downstream single-server pseudo-station of subsystem Ri

ni State of subsystem Ri

λi(ni) State-dependent arrival rate of stage-i raw parts at the upstream synchro-
nization station Ii of subsystem Ri

vi(ni) Conditional throughput of subsystem Ri

k ∈ Mi Index denoting the stations within subsystem Ri, where M1 =
{1, . . ., m1, Ŝ}, Mi = {I, 1, . . ., mi, Ŝ} for i = 2, . . ., N − 1, and
MN = {I, 1, . . ., mN , O}

ni
k State of station k in subsystem Ri

µi
k(ni

k) Load-dependent service rate of station k in subsystem Ri

µk(nk) Same as µi
k(ni

k) with index i dropped
T i

k Open system representing station k in subsystem Ri

Tk Same as T i
k with index i dropped

λi
k(ni

k) Rate of state-dependent Poisson arrival process at T i
k

λk(nk) Same as λi
k(ni

k) with index i dropped
vi

k(ni
k) Conditional throughput of T i

k

vk(nk) Same as vi
k(ni

k) with index i dropped
P i

k(ni
k) Steady-state probability of T i

k

pB Proportion of backordered demands
QD Average number of backordered demands
WB Average waiting time of backordered demands
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