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Abstract

In this paper are given some applications concerning correct and self-

adjoint boundary problems with differential cubic operators. Also the

solutions of these problems are obtained.

1 Introduction

Correct and selfadjoint boundary problems with cubic operators have been stud-
ied by I.N. Parasidis and P.C. Tsekrekos in the paper entitled ”Correct and
selfadjoint boundary problems with cubic operators ” [2] which is going to be
presented in the Conference ”Computer Algebra” in St. Petersburg, Russia
2009. In this paper are given applications of the above theory and are studied
specific boundary problems, with integro-differential equations, which reduced
to the type

B3x = Â3x−Y 〈Âx, F t〉Hm−S〈Â2x, F t〉Hm−G〈Â3x, F t〉Hm = f, D(B3) = D(Â3),
(1.1)

where Â is one well known correct selfadjoint operator, the vectors Y ∈ Hm, S ∈
D(Â)m, G ∈ D(Â2)m, F ∈ D(Â3)m and S, Y satisfy ( 3.3).
If an operator B1 is not cubic i.e. S, Y is not satisfy ( 3.3), then the
correctness and selfadjointness of the problems B1x = f can be proved by
the method developed in [1]. But if B1 is cubic i.e. B1 = B3, the proof
of the correctness and selfadjointness is much simpler.
The paper is organized as follows. In Section 2 we recall some basic terminology
and notation about operators. In Section 3 we recall the theory of correct and
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selfadjoint boundary problems with cubic operators, give the remark 3.3, we
prove also the proposition 3.4 and, finally, consider some applications of this
theory.

2 Terminology and notation

By 〈x, f〉H is denoted the inner product of elements x, f of a complex Hilbert
space H. For operators A : H → H we write D(A) and R(A) for the do-
main and the range of A respectively. An operator Â is called correct if
R(Â) = H and the inverse Â−1 exists and is continuous on H. Let A be an
operator with domain dense in H. The adjoint operator A∗ : H −→ H of A

with domain D(A∗) is defined by the equation 〈Ax, y〉H = 〈x,A∗y〉H for ev-
ery x ∈ D(A) and every y ∈ D(A∗). The domain D(A∗) of A∗ consists of
all y ∈ H for which the functional x 7−→ 〈Ax, y〉H is continuous on D(A).
An operator A is called selfadjoint if A = A∗. An operator D is called cubic

if there exists an operator B such that D = B3. Let Fi ∈ H, i = 1, . . . ,m.
Then F = (F1, . . . , Fm) and AF = (AF1, . . . , AFm) are vectors of Hm and
F = (Â−2F, Â−1F, F ) = (Â−2F1, . . . , Â

−2Fm, Â−1F1, . . . , Â
−1Fm, F1, . . . , Fm)

is a vector of H3m. We also write F t and 〈Ax,F t〉Hm for the column vectors
col(F1, . . . , Fm) and
col(〈Ax, F1〉H , . . . , 〈Ax, Fm〉H) respectively and denote by Im the identity m×m

matrix. By Â−3 is denoted the operator (Â−1)3, by N t the transpose matrix
of N , by 〈AF t, F 〉Hm the m×m matrix whose i, j-th entry is the inner product
〈AFi, Fj〉H and by 〈AF t, F 〉Hm the m × m matrix whose i, j-th entry is the
inner product 〈AFi, Fj〉H .

3 Some correct and selfadjoint problems

with differential cubic operators

We shall make use of the following [2, Lemma 3.3, Theorem 3.4]

Lemma 3.1. Let the operators B,B3 : H → H be defined by

Bx = Âx−G〈Âx, F t〉Hm = f, D(B) = D(Â), (3.1)

B3x = Â3x− Y 〈Âx, F t〉Hm − S〈Â2x, F t〉Hm −G〈Â3x, F t〉Hm = f, D(B3) = D(Â3),
(3.2)
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where Â is a selfadjoint operator on H, a vector G ∈ D(Â2)m,

S = ÂG−G〈F t, ÂG〉Hm , Y = ÂS −G〈F t, ÂS〉Hm (3.3)

and the components of the vector F = (F1, . . . , Fm) belong to D(Â3). Then
B3 = B3, i.e. B3 is a cubic operator.

Theorem 3.2. Let the operators Â, B3 : H → H and vectors G, S, Y be
defined as in lemma 3.1. We suppose also that Â is a correct operator,
G = (ÂF )C, where C is a m × m matrix with rank C = n ≤ m and the
components of vector F = (Â−2F, Â−1F, F )

(
resp. Â2F = (F, ÂF, Â2F )

)
are

linearly independent elements of D(Â3)
(
resp. D(Â)

)
. Then:

(i) B3 is selfadjoint if and only if C is Hermitian,
(ii) dim R(B3 − Â3) = 3n (n ≤ m),
(iii) B3 is a correct operator if and only if holds true

det L = det
[
Im − 〈ÂF t, F 〉HmC

]
6= 0. (3.4)

(iv) The unique solution, for every f ∈ H, of the problem ( 3.2) is given by

x =B−1
3 f = Â−3f +

[
Â−2F + (Â−1F )CL−1〈F t, F 〉Hm + FCL−1

(
〈Â−1F t, F 〉Hm

+〈F t, F 〉HmCL−1〈F t, F 〉Hm

)]
CL−1〈f, F t〉Hm +

[
Â−1F (3.5)

+FCL−1〈F t, F 〉Hm

]
CL−1〈f, Â−1F t〉Hm + FCL−1〈f, Â−2F t〉Hm .

Remark 3.3. In applications we encounter operators B1 of the form

B1u = Â3u− V1m〈u,J t
1〉Hm − V2m〈u, J t

2〉Hm − V3m〈u, J t
3〉Hm = f,

D(B1) = D(Â3), (3.6)

where the vectors Ji, Vim ∈ Hm, i = 1, 2, 3. Then we are interested to know if
the operator B1 is a B3 operator defined by ( 3.2) and so to apply the theorem
3.2. To this end we work as follows:
1. we show that the operator Â in (3.6) is correct and selfadjoint,
2. we find a vector F ∈ D(Â3)m and m×m matrices Mi, i = 1, 2, 3 with con-
stant elements such that 〈u, J t

1〉Hm = M1〈Âu, F t〉Hm ,

〈u, J t
2〉Hm = M2〈Â2u, F t〉Hm and 〈u, J t

3〉Hm = M3〈Â3u, F t〉Hm ,
3. we find vectors Y = V1mM1, S = V2mM2 ∈ Hm and G = V3mM3 ∈
D(Â)m such that Y = ÂS−G〈F t, ÂS〉Hm and S = ÂG−G〈F t, ÂG〉Hm .

If one of these steps fails, then B1 is not identified as an B3 operator and so the
theory can not be applied.
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Bellow Hi(0, 1) denote the Sobolev spaces of all complex functions of L2(0, 1)
which have generalized derivatives up to i -th order respectively Lebesque inte-
grable, i = 1, 2, 3, 4.

We recall [1, p.780] that the operator Â : L2(0, 1) → L2(0, 1) defined by

Âu = iu′ = f, D(Â) = {u(t) ∈ H1(0, 1) : u(0) + u(1) = 0} (3.7)

is correct and selfadjoint and the unique solution u of the problem ( 3.7) is given
by the formula

Â−1f =
i

2

∫ 1

0

f(x)dx− i

∫ t

0

f(x)dx for all f ∈ H. (3.8)

Then it follows easily [1, p.781] that the operator Â2 defined by

Â2u = −u′′ = f, D(Â2) = {u ∈ H2(0, 1) : u(0) + u(1) = 0, u′(0) + u′(1) = 0}
(3.9)

is correct and selfadjoint and for every f ∈ L2(0, 1) the unique solution u of the
problem ( 3.9) is given by the formula

u = Â−2f = −
∫ t

0

(t− x)f(x)dx +
1
4

∫ 1

0

(2t− 2x + 1)f(x)dx. (3.10)

Proposition 3.4. The operator Â : L2(0, 1) → L2(0, 1) which corresponds to
the problem

Âu = −iu′′′ = f, (3.11)

D(Â) = {u ∈ H3(0, 1) : u(0) + u(1) = 0, u′(0) + u′(1) = 0, u′′(0) + u′′(1) = 0}

is correct and selfadjoint and for every f ∈ L2(0, 1) the unique solution u of the
problem ( 3.11) is given by the formula

u(t) = Â−1f =
i

2

∫ t

0

(t− x)2f(x)dx− i

4
(t2 − t)

∫ 1

0

f(x)dx

− i

4

∫ 1

0

[2t− (2t + 1)x + x2]f(x)dx. (3.12)

Proof. It is evident that Â = Â3, where Â is defined by ( 3.7). Correctness and
selfadjointness of Â implies correctness and selfadjointness of Â3 = Â. Now we
will prove the formula ( 3.12). Let g(x) = Â−1f(x). Then by ( 3.10), ( 3.8)
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and Fubini’s theorem we have

Â−1f(t) = Â−3f(t) = Â−2
(
Â−1f(t)

)
= Â−2g(x) = −

∫ t

0

(t− x)g(x)dx

+
1
4

∫ 1

0

(2t− 2x + 1)g(x)dx = −
∫ t

0

(t− x)
[ i

2

∫ 1

0

f(y)dy − i

∫ x

0

f(y)dy
]
dx

+
1
4

∫ 1

0

(2t− 2x + 1)
[ i

2

∫ 1

0

f(y)dy − i

∫ x

0

f(y)dy
]
dx = − i

2

∫ t

0

(t− x)dx

∫ 1

0

f(y)dy

+i

∫ t

0

(t− x)dx

∫ x

0

f(y)dy +
i

8

∫ 1

0

(2t− 2x + 1)dx

∫ 1

0

f(y)dy

− i

4

∫ 1

0

(2t− 2x + 1)dx

∫ x

0

f(y)dy = − it2

4

∫ 1

0

f(y)dy +
i

2

∫ t

0

(t− y)2f(y)dy

+
it

4

∫ 1

0

f(y)dy − i

4

∫ 1

0

[2t− (2t + 1)y + y2]f(y)dy and finally we obtain

Â−3f =
i

2

∫ t

0

(t− x)2f(x)dx− i

4
(t2 − t)

∫ 1

0

f(x)dx (3.13)

− i

4

∫ 1

0

[
2t− (2t + 1)x + x2

]
f(x)dx.

which, since Â−1 = Â−3, gives ( 3.12).

Example 3.5. The operator B1 : L2(0, 1) → L2(0, 1) which corresponds to the
problem

B1u =− iu′′′ + 120c1[2c2
1(t

2 − t) + ic1(2t− 1)− 1]
∫ 1

0

(x2 − x)u(x)dx

+5c1[2t− 1− 2ic1(t2 − t)]
∫ 1

0

u′′(x)(4x3 − 6x2 + 1)dx (3.14)

+5c1(t2 − t)
∫ 1

0

u′′′(x)(4x3 − 6x2 + 1)dx = f(t), D(B1) = D(Â)

is correct and selfadjoint iff c1 is a real nonzero constant. The unique solution
of ( 3.14), for each f ∈ L2(0, 1), is given by the formula

u(t) =Â−3f(t) +
5c1

12

[ 1
10

(2t5 − 5t4 + 5t2 − 1)− 17ic1

84
(t4 − 2t3 + t)+

+
289c2

1

7056
(4t3 − 6t2 + 1)

] ∫ 1

0

(4x3 − 6x2 + 1)f(x)dx− 5c1

12

[
t4 − 2t3 + t

−17ic1

84
(4t3 − 6t2 + 1)

] ∫ 1

0

(x4 − 2x3 + x)f(x)dx +
c1

24
(4t3 − 6t2

+1)
∫ 1

0

(2x5 − 5x4 + 5x2 − 1)f(x)dx, (3.15)

where Â−3f(t) is defined by ( 3.13).
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Proof. We refer to theorem 3.2. If we compare equation ( 3.14) with equation
( 3.2) it is natural to take Â3u = −iu′′′ with D(Â3) = D(B1), m = 1, F =
4t3 − 6t2 + 1. Then we can take Â to be defined by ( 3.7), Â2 by ( 3.9).
It evident that F ∈ D(Â3), ÂF = 12i(t2 − t), Â2F = −12(2t − 1), and that
〈Âu, F 〉H =

∫ 1

0
iu′(x)(4x3 − 6x2 + 1)dx, 〈Â2u, F 〉H = −

∫ 1

0
u′′(x)(4x3 − 6x2 +

1)dx, 〈Â3u, F 〉H =
∫ 1

0
[−iu′′′(x)](4x3 − 6x2 + 1)dx. By integrating by parts

we have 〈Âu, F 〉H = −12i
∫ 1

0
(x2 − x)u(x)dx. Then

∫ 1

0
(x2 − x)u(x)dx =

i
12 〈Âu, F 〉H ,

∫ 1

0
u′′(x)(4x3 − 6x2 + 1)dx = −〈Â2u, F 〉H ,

∫ 1

0
u′′′(x)(4x3 − 6x2 +

1)dx = i〈Â3u, F 〉H . Replacing these elements in ( 3.14) we get:

B1u = Â3u + 10ic1[2c2
1(t

2 − t) + ic1(2t− 1)− 1]〈Âu, F 〉H − 5c1[2t− 1

−2ic1(t2 − t)]〈Â2u, F 〉H + 5ic1(t2 − t)〈Â3u, F 〉H = f(t). (3.16)

By comparing again ( 3.16) with ( 3.2)) we take Y = −10ic1[2c2
1(t

2−t)+ic1(2t−
1)− 1], S = 5c1[2t− 1− 2ic1(t2 − t)] and G = −5ic1(t2 − t). It evident
that G ∈ D(Â2) and F, ÂF, Â2F are linearly independent elements of D(Â). By
simple calculations we find ÂG−G〈F t, ÂG〉Hm = 5c1(2t−1)−10ic2

1(t
2− t) = S

and ÂS −G〈F t, ÂS〉Hm = 10c1[i + c1(2t− 1)− 2ic2
1(t

2 − t)] = Y. The last two
equalities, by lemma 3.1, show that the operator B1 is cubic, i.e. B1 = B3.
From G = (ÂF )C it follows −5ic1(t2− t) = 12i(t2− t)C. This equation implies
that C = −5c1/12. We find 〈F t, F 〉H = 17/35, 〈ÂF t, F 〉H = 0. By theorem
3.2 the operator B1 is correct and selfadjoint iff c1 is a real number and detL =
det[Im − 〈ÂF t, F 〉HmC] = 1− 0 = 1 6= 0. Hence L−1 = 1. So B1 is correct and
selfadjoint if and only if c1 is a real nonzero constant. If we substitute in ( 3.8)
and ( 3.10) f = F = 4t3 − 6t2 + 1, we receive Â−1F = −i(t4 − 2t3 + t) and
Â−2F = − 1

10 (2t5−5t4+5t2−1). Then 〈f, Â−1F 〉H = i
∫ 1

0
(x4−2x3+x)f(x)dx,

〈f, Â−2F 〉H = − 1
10

∫ 1

0
(2x5−5x4 +5x2−1)f(x)dx and 〈Â−1F, F 〉H = 0. From

this and ( 3.5), ( 3.10) we get the solution (3.15) of the problem (3.14).

Example 3.6. The operator B1 : L2(0, 1) → L2(0, 1) which corresponds to the
problem

B1u =− iu′′′ + c1π
2[(1 + 25c1) cos πt + (27 + 75c2

1) cos 3πt + 5i(sinπt (3.17)

+9 sin 3πt)]
∫ 1

0

u′(x)(sinπx + sin 3πx)dx− c1π
2[sinπt + 9 sin 3πt

−5ic1(cos πt + 3 cos 3πt)]
∫ 1

0

u′(x)(cos πx + 3 cos 3πx)dx− c1(cos πt

+3 cos 3πt)
∫ 1

0

u′′′(x)(sinπx + sin 3πx)dx = f(t), D(B1) = D(Â)
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is correct and selfadjoint iff c1 is a real nonzero constant.
The unique solution of ( 3.17), for each f ∈ L2(0, 1), is given by the formula

u(t) =Â−3f(t) +
c1

9π3

{
[sin 3πt + 9 sinπt + 3ic1(3 cos πt + cos 3πt) + 9c2

1(sinπt

+sin 3πt)]
∫ 1

0

(sinπx + sin 3πx)f(x)dx + [3 cos πt + cos 3πt− 3ic1(sinπt

+sin 3πt)]
∫ 1

0

(3 cos πx + cos 3πx)f(x)dx + (sinπt

+sin 3πt)
∫ 1

0

(9 sinπx + sin 3πx)f(x)dx, (3.18)

where Â−3f(t) is defined by ( 3.13).

Proof. We refer to theorem 3.2. If we compare equation ( 3.14) with equation
( 3.2) it is natural to take Â3u = −iu′′′ with D(Â3) = D(B1), m = 1, F =
sinπt + sin 3πt. Then we can take Â to be defined by ( 3.7), Â2 by ( 3.9).
It evident that F ∈ D(Â3), ÂF = iπ(cos πt + 3 cos 3πt), Â2F = π2(sinπt +
9 sin 3πt) and that 〈Âu, F 〉H =

∫ 1

0
iu′(x)(sinπx + sin 3πx)dx, 〈Â2u, F 〉H =

−
∫ 1

0
u′′(x)(sinπx+sin 3πx)dx = π

∫ 1

0
u′(x)(cos πx+3 cos 3πx)dx, 〈Â3u, F 〉H =∫ 1

0
[−iu′′′(x)](sinπx+sin 3πx)dx. Then

∫ 1

0
u′(x)(sinπx+sin 3πx)dx = −i〈Âu, F 〉H ,∫ 1

0
u′(x)(cos πx + 3 cos 3πx)dx = 1

π 〈Â
2u, F 〉H ,

∫ 1

0
u′′′(x)(sinπx + sin 3πx)dx =

i〈Â3u, F 〉H . Replacing these elements in ( 3.17) we get:

B1u =Â3u− ic1π
2[(1 + 25c1) cos πt + (27 + 75c2

1) cos 3πt + 5i(sinπt

+9 sin 3πt)]〈Âu, F 〉H − c1π[sinπt + 9 sin 3πt− 5ic1(cos πt (3.19)

+3 cos 3πt)]〈Â2u, F 〉H − ic1(cos πt + 3 cos 3πt)〈Â3u, F 〉H = f(t).

By comparing again ( 3.16) with ( 3.2)) we take Y = ic1π
2[(1+25c1) cos πt+(27+

75c2
1) cos 3πt + 5i(sinπt + 9 sin 3πt)], S = c1π[sinπt + 9 sin 3πt− 5ic1(cos πt +

3 cos 3πt)] and G = ic1(cos πt+3 cos 3πt). It evident that G ∈ D(Â2). The
vectors F, ÂF, Â2F are linearly independent elements of D(Â), since the corre-
sponding determinant of the Gramm matrix is nonzero. By simple calculations
we find ÂG−G〈F t, ÂG〉Hm = c1π[sinπt+9 sin 3πt−5ic1(cos πt+3 cos 3πt)] = S

and ÂS −G〈F t, ÂS〉Hm = ic1π
2[cos πt + 27 cos 3πt + 5ic1(sinπt + 9 sin 3πt)]−

ic1(cos πt + 3 cos 3πt)(−25π2c2
1) = Y. The last two equalities, by lemma 3.1,

show that the operator B1 is cubic, i.e. B1 = B3. From G = (ÂF )C it fol-
lows ic1(cos πt+3 cos 3πt) = iπ(cos πt+3 cos 3πt)C. This equation implies that
C = c1/π. We find 〈F t, F 〉H = 1, 〈ÂF t, F 〉H = 0. By theorem 3.2 the oper-
ator B1 is correct and selfadjoint iff c1 is a real number and det L = det[Im −
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〈ÂF t, F 〉HmC] = 1−0 = 1 6= 0. Hence L−1 = 1. So B1 is correct and selfadjoint
if and only if c1 is a real nonzero constant. If we substitute in ( 3.8) and ( 3.10)
f = F = sinπt+sin 3πt, we receive Â−1F = i

3π (3 cos πt+cos 3πt) and Â−2F =
1

9π2 (9 sinπt + sin 3πt). Then 〈f, Â−1F 〉H = − i
3π

∫ 1

0
(3 cos πx + cos 3πx)f(x)dx,

〈f, Â−2F 〉H = 1
9π2

∫ 1

0
(9 sinπx + sin 3πx)f(x)dx and 〈Â−1F, F 〉H = 0. From

this and ( 3.5), ( 3.10) we get the solution (3.18) of the problem (3.17).
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