

COPE
User
Guide

A guide on using the Component Adaptation Environment (COPE)

COPE User Guide Page 1 of 65

OPEN-SME Project http://opensme.eu

Table of Contents

ABBREVIATIONS .. 6

1. COPE USER GUIDE .. 7

1.1 INTRODUCTION ... 7

1.1.1 COPE: Purpose & Scope .. 7

1.1.2 Before you start using COPE .. 7

1.2 INSTALLING COPE ... 8

1.2.1 Minimum System Requirements ... 8

1.2.2 Software Prerequisites .. 9

1.2.3 Installation Process ... 9

1.3 USING COPE .. 9

1.3.1 Preparing a F/LOSS project for COPE .. 10

1.3.2 Exiting COPE .. 10

1.3.3 Creating a new Reuse Project ... 10

1.3.4 Opening an existing Reuse Project ... 12

1.3.5 Analyzing a Reuse Project with COPE ... 13

1.3.5.1 Performing Static Analysis .. 13

1.3.5.2 Performing Source File Indexing... 16

1.3.5.3 Performing Documentation Generation .. 17

1.3.5.4 Performing Dynamic Analysis ... 18

1.3.5.5 Performing History Analysis .. 34

1.3.5.6 Performing Pattern Analysis .. 34

1.3.6 Cluster Recommendation .. 35

1.3.6.1 Running the Dependencies Recommender ... 36

1.3.6.2 Running the Pattern Recommender ... 37

1.3.7 Component Making ... 38

1.3.7.1 Running the Dependencies Maker ... 39

1.4 COPE’S COMPONENTS STRUCTURE .. 41

1.4.1 Root Directory (Component’s Name) .. 43

COPE User Guide Page 2 of 65

OPEN-SME Project http://opensme.eu

1.4.2 Readme.txt ... 43

1.4.3 Source Directory (src/) .. 43

1.4.4 Libraries Directory (lib/)... 43

1.4.5 Documentation Directory (doc/) ... 44

1.4.6 Test Directory (test/) ... 44

1.5 THE KNOWLEDGE MANAGER .. 44

1.5.1 Characterizing a Generated Component .. 46

1.5.2 Adding / Removing / Renaming Languages and Technologies 47

1.5.3 Classifying Components .. 49

1.5.3.1 Adding a new Concept ... 50

1.5.3.2 Adding a new Domain ... 50

1.5.3.3 Assigning Concepts to Domains .. 50

1.5.3.4 Creating the Metamodel .. 53

1.5.3.5 Classifying the Component .. 58

1.5.3.6 Selecting Tiers.. 60

1.5.4 Synchronizing with Compare Repository .. 60

1.6 KNOWN ISSUES & WORKAROUNDS ... 62

1.6.1 Documentation Generation ... 62

1.6.2 Dynamic Analysis .. 62

1.6.2.1 Coverage .. 62

1.6.2.2 Validation .. 63

1.6.3 Component Makers .. 63

2. REFERENCES .. 64

COPE User Guide Page 3 of 65

OPEN-SME Project http://opensme.eu

List of Figures

Figure 1 - COPE’s main window ... 10

Figure 2 – New Reuse Project… dialog ... 11

Figure 3- Reuse Project successfully created ... 12

Figure 4- Open Reuse Project… dialog ... 13

Figure 5- COPE performing Static Analysis .. 15

Figure 6- COPE’s main window after a successful static analysis .. 15

Figure 7- COPE performing Source File Indexing ... 16

Figure 8- Searching for classes using COPE’s internal search engine .. 17

Figure 9-Documentation for the class Account of the JMoney Reuse Project .. 18

Figure 10- COPE’s Dynamic Analysis: Component Selection Tab ... 19

Figure 11- Selecting an execution scenario .. 21

Figure 12- Dynamic Analysis: Coverage Tab .. 21

Figure 13 – Coverage results .. 22

Figure 14 – Coverage information for Account’s setName method .. 23

Figure 15 – Control Flow Graph for Account’s setName method ... 23

Figure 16 – Validation: Class tab ... 24

Figure 17 - Validation: Interfaces tab .. 24

Figure 18 - Validation: Scope tab .. 25

Figure 19 - Validation: Tests tab .. 25

Figure 20 - Validation: AspectJ tab.. 26

Figure 21 – Validation process successfully completed .. 27

Figure 22 – ProM MXML file tab .. 27

Figure 23 – Dynamic Analysis: State Mappings .. 28

Figure 24 – Dynamic Analysis: Variable Mappings .. 29

Figure 25 – Dynamic Analysis: Visualize FSM tab ... 30

Figure 26 – Guidelines to use ModelJUnit as an external tool .. 31

COPE User Guide Page 4 of 65

OPEN-SME Project http://opensme.eu

Figure 27 – Dynamic Analysis: ModelJUnit generated code... 31

Figure 28 – Customized Dynamic Analysis HTML report .. 32

Figure 29 – Dynamic Analysis HTML Report: Component Description .. 33

Figure 30 - Dynamic Analysis HTML Report: Coverage Report (generic) ... 33

Figure 31 - Dynamic Analysis HTML Report: Coverage Report (method view pt. 1) 34

Figure 32 - Dynamic Analysis HTML Report: Coverage Report (method view pt.2) 34

Figure 33- COPE’s main window after Pattern Analysis ... 35

Figure 34 – Introductory dialog to Dependencies Recommender .. 36

Figure 35 – Dependencies Recommender main dialog .. 37

Figure 36 – Introductory dialog to Pattern Recommender ... 38

Figure 37 – Pattern Recommender Main Dialog .. 38

Figure 38 – Extracting component from classes selected in the main window of COPE 39

Figure 39 – Dependency Maker main dialog ... 40

Figure 40 – Dependency Maker dialog after a component was successfully generated 41

Figure 41: COPE generated components’ packaging ... 42

Figure 42: Project Folder.. 43

Figure 43 – Knowledge Manager: Main dialog ... 45

Figure 44 – Characterizing a component ... 47

Figure 45 – Managing Languages and Technologies dialog .. 48

Figure 46 – J2ME technology added .. 48

Figure 47 – J2ME technology available at the Components Tab .. 49

Figure 48 – The main dialog of the Component Classification Console ... 49

Figure 49 – Assigning concept to domain .. 51

Figure 50 – Select concept dialog .. 51

Figure 51 – Concept successfully assigned to a domain .. 52

Figure 52 – Domain successfully assigned to concept ... 53

Figure 53- Component MetaModels Dialog... 54

Figure 54 – MetaModel group successfully created .. 55

Figure 55 – MetaModel successfully created ... 56

Figure 56 – Domain selection window ... 57

Figure 57 – Metamodel successfully created ... 57

Figure 58 – Classifying a component ... 58

COPE User Guide Page 5 of 65

OPEN-SME Project http://opensme.eu

Figure 59 – MetaModel selection... 59

Figure 60 – Component classification successfully finished ... 59

Figure 61 – Select tier dialog ... 60

Figure 62 – Synchronization process between COPE and COMPARE ... 61

Figure 63 – Successful synchronization message .. 61

Figure 64 – Knowledge Manager’s main dialog after the successful completion of the synchronization

process .. 62

COPE User Guide Page 6 of 65

OPEN-SME Project http://opensme.eu

ABBREVIATIONS

OPEN-SME Open Source Software Reuse Service for Small / Medium Enterprises

OCEAN Open Source Search Engine

COPE Component Adaptation Environment

COMPARE Component Repository and Search Engine

F/LOSS Free/Libre Open Source Software

UML Unified Modeling Language

CPU Central Processing Unit

RAM Random Access Memory

LCSAJ Linear Code Sequence And Jump

FSM Finite State Machine

SME Small and Medium Enterprise

SME AG Small and Medium Enterprise Association Group

SVN Subversion

E-Tier Enterprise Tier

R-Tier Resource Tier

U-Tier User Interface Tier

W-Tier Workspace Tier

XML Extensible Markup Language

ProM Process Mining

COPE User Guide Page 7 of 65

OPEN-SME Project http://opensme.eu

1. COPE USER GUIDE

1.1 INTRODUCTION

This document aims in providing a complete yet simple guide in using OPEN-SME Component

Adaptation Environment (COPE). Using this document the Reuse Engineer will be able to reuse

Free/Libre Open Source Software (F/LOSS) Projects to produce autonomous, software components.

This guide presents in detail the aforementioned process of extracting components from existing F/LOSS

projects and provides real case studies that can be used as examples for the intended user.

1.1.1 COPE: PURPOSE & SCOPE

The OPEN-SME Component Adaptation Environment (COPE) tool-chain was designed to support in a

holistic manner the different activities of the Domain Engineering Process. COPE is an application with

clearly defined interfaces. Different component implementations result in different instantiations of

COPE’s tool chain to support specific modeling languages, programming languages, target platforms etc.

For the time being COPE is 100% compatible with Linux based operating systems and supports the

Unified Model Language (UML) and Java based F/LOSS Projects.

1.1.2 BEFORE YOU START USING COPE

Every F/LOSS Project selected to be analysed and reused with COPE, is being stored in the form of a

“Reuse Project”.

A “Reuse Project” serves as an extended version of a regular F/LOSS project. It combines the source

code related information (of the original F/LOSS project) with those resulted from the static analysis

process. A Reuse Project’s lifecycle consists of the following phases:

 Analysis phase: the source code of the target F/LOSS project is being analysed and the results

of this analysis are being stored in its “Reuse Project”. COPE currently supports:

1. Static Analysis: Calculates different metrics and dependencies among classes (among

other things) by statically analysing the source code (i.e. without executing the

program).

2. Source File Indexing: Creates an index of the source files suitable for free-text

searching.

1. Documentation Generation: Generates the documentation of the source code (Javadoc)

with the addition of UML diagrams for each class and package.

2. Dynamic Analysis: Analyses the program using dynamic analysis (i.e. by executing the

program). The reuse engineer uses dynamic analysis after component extraction to

understand the functioning of an extracted component, determine the coverage of the

dynamic analysis, validate the component using model-based testing techniques etc.

3. History Analysis: We store the changes that occurred in a project's development history

for Subversion repositories. Currently this feature is not used for the recommendation of

components but it may be used in the future.

4. Pattern Analysis: We use pattern detection techniques (e.g. detection of the Adapter or

Proxy design patterns [1]) to pinpoint classes that participate in design patterns. Based

COPE User Guide Page 8 of 65

OPEN-SME Project http://opensme.eu

on pattern participation we then extract components (e.g. extract a component of a

subsystem behind a proxy as a component).

 Cluster Recommendation: in this phase COPE automatically suggests class clusters that could

possibly serve as reusable components. Currently, the following recommenders are available in

COPE:

1. Dependencies Recommender: Extracts components based on an analysis of the

dependencies of the classes in a project.

2. Pattern Recommender: Extracts components based on the detected patterns of the

project.

 Component Making: this set of functionalities allows the user to extract components from the

reuse project by either using class clusters recommended in the Cluster Recommendation phase

or by selecting a single class that along with its dependencies will form a class cluster and

eventually the reusable component. Currently, four different component makers are available in

COPE:

1. Interface Maker: It uses a class as a starting point and creates a component that includes

all class’s dependencies (recursively).

2. Dependency Maker: It uses the clusters produced by the dependencies recommender to

create components.

3. Adapter Pattern Maker: It creates components using as starting point classes that

implement the Adapter design pattern.

4. Proxy Pattern Maker: It creates components using as starting point classes that

implement the Proxy design pattern.

 Knowledge Management: in this phase the user provides information for the generated

components. Using the “Semantic Application” feature, the user can describe the functionality of

each component. Moreover s/he can classify the resulting component to a specific domain and

concept.

NOTE THAT: The aforementioned phases and options form COPE’s process in its full form. However it

is possible for some phases and / or functionalities to be omitted.

1.2 INSTALLING COPE

This section provides detailed guidelines on installing COPE to your machine. COPE was designed to be

as autonomous as possible. Therefore the prerequisites and dependencies in pre-existing software and

tools have been minimized.

In general, COPE uses a MySQL database to store all the information needed to support its processes. It

also uses the graphviz program to produce figures of UML diagrams. There are available packages for

most Linux distributions that can be used to install these requirements.

1.2.1 MINIMUM SYSTEM REQUIREMENTS

 CPU: Pentium IV, 3.2GHz, Multithreading

 RAM: 2GB

 Free Disk Space: 10GB

COPE User Guide Page 9 of 65

OPEN-SME Project http://opensme.eu

 Operating System: Linux

1.2.2 SOFTWARE PREREQUISITES

 Graphviz (http://www.graphviz.org)1

 MySQL (http://www.mysql.com)

1.2.3 INSTALLATION PROCESS

From the provided CD:

1. Create the database using the script "CopeDatabase.sql", located in "database script" folder

a. As MySQL root user, use the command:

create database dependencies;

from the mysql command prompt.

b. Then from the OS command line issue the command:

mysql –u root –p dependencies < CopeDatabase.sql

2. Create a database user, with these credentials:

 username: copeuser

 password: opensme

From the MySQL command prompt as a root user, execute the following command:

CREATE USER 'copeuser'@'localhost' IDENTIFIED BY 'opensme';

3. Give all the privileges of the database ‘dependencies’ created above, in the new user:

a. From the MySQL command prompt as a root user, execute the following command:

GRANT ALL ON dependencies.* TO 'copeuser'@'localhost';

4. Run the application from the command line with the command:

java -jar COPESwingApp.jar

1.3 USING COPE

The main window of COPE consists of three areas of focus (see Figure 1 - COPE’s main window).

 Area A (marked with red): COPE’s main menu.

 Area B (marked with blue): Search engine intended in discovering classes within a reuse

project that match specific criteria.

 Area C (marked with green): Shows the results of the analyses for a specific Free/Libre Open

Source Software Project.

1 In case Graphviz is not available COPE will still be able to run but all UML diagrams won’t be available.

COPE User Guide Page 10 of 65

OPEN-SME Project http://opensme.eu

Figure 1 - COPE’s main window

1.3.1 PREPARING A F/LOSS PROJECT FOR COPE

In order for a Free/Libre Open Source Software Project to be able to serve as a Reuse Project for COPE

the following information needs to be available:

 The binary (.jar) file of the project

 Any possible external libraries (dependencies, usually in .jar format)

 The source code of the project

CASE STUDY: For this part of our guide we will be using JMoney2 as an example. Before we proceed in

creating a new Reuse Project for JMoney in COPE we need to go through the aforementioned

preparation process (see Figure 2 – New Reuse Project… dialog) to see the specific information of

JMoney project.

1.3.2 EXITING COPE

To exit COPE:

1. Select “Exit” from the File menu.

NOTE THAT: In case you were working on a Reuse Project, possible changes are automatically saved.

1.3.3 CREATING A NEW REUSE PROJECT

To create a new Reuse Project in COPE:

2 http://sourceforge.net/projects/jmoney/

A

B

C

http://sourceforge.net/projects/jmoney/

COPE User Guide Page 11 of 65

OPEN-SME Project http://opensme.eu

2. Select “New Reuse Project…” from the File menu.

3. Provide the appropriate data (see 1.3.1) to the dialog “New Reuse Project Properties” (see Figure 2 –

New Reuse Project… dialog).

 Reuse Project Name (mandatory): The name for the Reuse Project (free text – usually the

name of the F/LOSS project to be added to COPE)

 JAR File (mandatory): Path of the binary file of the F/LOSS project.

 Dependencies (optional): Paths of the external libraries (.jar format) that serve as dependencies

to the F/LOSS project. The reuse engineer can add or remove libraries at will using the buttons

provided at the right of the form. Finally, mass addition of libraries is possible by using the

CTRL+A hotkey.

 Repository URL (optional): The URL to the SVN repository of the F/LOSS project.

 Source Code Directory (mandatory): Path to the root folder of the source code of the F/LOSS

project.

Figure 2 – New Reuse Project… dialog

NOTE THAT: The name of root folder of the source code should always be “src”.

4. Click on “Create Reuse Project”. If no errors occur, the following dialog should appear. The newly

created project was successfully loaded and the given name appears to the window title (e.g.

JMoney). The dialog instructs the Reuse Engineer to continue by performing Static Analysis (see

1.3.5.1).

COPE User Guide Page 12 of 65

OPEN-SME Project http://opensme.eu

Figure 3- Reuse Project successfully created

The aforementioned process can be aborted at any step by clicking the “Cancel” button.

1.3.4 OPENING AN EXISTING REUSE PROJECT

To open an existing Reuse Project in COPE:

1. Select “Open Reuse Project…” from the File menu.

2. In the dialog that appears, select the Reuse Project.

3. Click “Open”.

COPE User Guide Page 13 of 65

OPEN-SME Project http://opensme.eu

Figure 4- Open Reuse Project… dialog

If no errors occur the Reuse Project is loaded successfully in its latest known state. The aforementioned

process can be aborted at any step by clicking the “Cancel” button.

CASE STUDY: If we choose to open the “JMoney” Reuse Project which we created in the previous

paragraph, COPE will take us back to “Figure 3- Reuse Project successfully created”.

1.3.5 ANALYZING A REUSE PROJECT WITH COPE

There are several analyzers available in COPE. These analyzers can be applied to any COPE Reuse

Project and provide information such as metrics, source code documentation, pattern detection, etc. This

information can assist the Reuse Engineer in the phases that follow to decide which components are

promising for extraction.

1.3.5.1 PERFORMING STATIC ANALYSIS

Static Analysis results on a specific set of information for the source code of a Reuse Project. More

specifically for each class of the F/LOSS Project participating in a Reuse Project in COPE, Static

Analysis returns:

 Class Name: The fully qualified name of the specific class.

 Type: The type of the class (e.g. “Class”, “Abstract Class”, “Interface”, etc.).

 Size: The size of the specific class (in bytes).

 Used By: Number of classes in the project that uses the specific class.

 Uses (I): Number of internal classes used by the specific class.

COPE User Guide Page 14 of 65

OPEN-SME Project http://opensme.eu

 Uses (E): Number of external classes used by the specific class.

 Layer: The layer of the class. The Classycle analyzer tool3 is used internally to discover class

dependencies and Directed Acyclic Graph (DAG) layers. The Classycle tool discovers strong

dependencies between classes and packages, and creates a Strongly Connected Components

(SCC) graph applying Tarjan’s algorithm. Next, according to SCCs calls, the graph is

condensated to an acyclic digraph of SCCs, from which the layers are extracted.

 The Chidamber and Kemerer Java Metrics: These metrics are calculated with the help of the

CKJM tool4
,5:

o WMC: Weighted Methods per Class.

o DIT: Depth of Inheritance Tree.

o NOC: Number of Children.

o CBO: Coupling between object classes.

o RFC: Response for a Class.

o LCOM: Lack of cohesion in methods.

o Ca: Afferent couplings.

o NPM: Number of Public Methods.

 R (reusability index): It is an estimation of the reusability of a class based on the Chidamber-

Kemerer metrics. The larger this value the more reusable a class is. It can take values between 3

to -20 (approximately).

 Pattern: The design pattern to which a specific class is involved (if any).

 Cluster Size: The number of classes the specific class needs in order to form an autonomous,

fully functional component. This is the cardinality of the dependencies' set of a class, which

includes the class's dependencies, the dependencies of these dependencies and so on.

To perform static analysis for a Reuse Project in COPE:

1. Select “Static Analysis” from the Analysis menu.

2. In the dialog that appears (entitled “Static Analysis”) click to the Start button.

3 http://classycle.sourceforge.net/

4 http://www.spinellis.gr/sw/ckjm/

5 A more detailed analysis on the Chidamber and Kemerer Java Metrics can be found here

http://classycle.sourceforge.net/
http://www.spinellis.gr/sw/ckjm/
http://www.spinellis.gr/sw/ckjm/doc/metric.html

COPE User Guide Page 15 of 65

OPEN-SME Project http://opensme.eu

Figure 5- COPE performing Static Analysis

3. When the analysis is complete (the progress bar has reached 100%) you can close the “Static

Analysis” dialog using the close button of the dialog.

After the static analysis has ended, COPE’s main window contains a series of metrics and information

produced by the static analysis.

CASE STUDY: Performing Static Analysis to the JMoney Reuse Project produces the following results

Figure 6- COPE’s main window after a successful static analysis

COPE User Guide Page 16 of 65

OPEN-SME Project http://opensme.eu

In the red area COPE provides file structure of the source code for the JMoney project (with nodes

representing the packages and leaves representing the classes).

The green area is presenting the aforementioned data provided by the static analysis.

1.3.5.2 PERFORMING SOURCE FILE INDEXING

Source File Indexing is another analyser that creates an index from the source files of a Reuse Project.

This index enables the feature of the internal search engine we mentioned in the beginning of section 2

and provides five different fields for targeted search:

 Full Text: performs search for the specified keywords to the whole class file

 Name: performs search for the specified keywords to the name of the class file

 Attribute: performs search for the specified keywords to the attributes of the class file

 Method: performs search for the specified keywords to the methods of the class file

 Comment: performs search for the specified keywords to the comments of the class file

To perform Source File Indexing for a Reuse Project in COPE:

1. Select “Source File Indexing…” from the Analysis menu.

2. In the dialog that appears (entitled “Source File Indexing”) click to the Start button.

3. When the analysis is complete (the progress bar has reached 100%) you can close the “Source File

Indexing” dialog using the “X” button.

Figure 7- COPE performing Source File Indexing

CASE STUDY: Having performed Source File Indexing for JMoney Reuse Project we can now use the

internal search engine to find classes that match specific queries. For example a search for the term

“Currency” using the field of “Full text” will return (in the form of highlighted rows) six classes of the

JMoney Reuse Project (see Figure 8- Searching for classes using COPE’s internal search engine)

COPE User Guide Page 17 of 65

OPEN-SME Project http://opensme.eu

Figure 8- Searching for classes using COPE’s internal search engine

1.3.5.3 PERFORMING DOCUMENTATION GENERATION

Documentation Generation creates the Javadoc documentation for the source code of the Reuse Project.

To perform Documentation Generation for a Reuse Project in COPE:

1. Select “Documentation Generation…” from the Analysis menu.

2. In the dialog that appears click to the Start button.

3. When the generation is complete (the progress bar has reached 100%) you can close the process

dialog using the “X” button.

CASE STUDY: After the Documentation Generation process is finished the Reuse Engineer is able to

see the documentation for a class of the Reuse Project by selecting this class from the tree view located

in the left of COPE’s main window (see Figure 6- COPE’s main window after a successful static

analysis).

Let’s say, for example, that in the JMoney Reuse Project, we would like to see the documentation of the

class Account. Selecting it with the aforementioned way would provide us with the following dialog:

COPE User Guide Page 18 of 65

OPEN-SME Project http://opensme.eu

Figure 9-Documentation for the class Account of the JMoney Reuse Project

NOTE THAT: besides the standard javadoc, uml diagrams are also included. COPE internally uses the

apiviz doclet6 which provides the generated documentation.

1.3.5.4 PERFORMING DYNAMIC ANALYSIS

Dynamic Analysis, gives the opportunity to the Reuse Engineer to test and validate the components he

extracts from COPE’s Reuse Projects. More specifically, Dynamic Analysis can provide the following

information:

 Statement Coverage of the Component

 Statement Coverage per Method of the Component

 Linear Code Sequence and Jump (LCSAJ) coverage of the Component

 LCSAJ Coverage per Method of the Component

 Control Flow Graph per Method of the Component

6 http://code.google.com/p/apiviz/

http://code.google.com/p/apiviz/

COPE User Guide Page 19 of 65

OPEN-SME Project http://opensme.eu

 Automatic Functional Test Generation

NOTE THAT:

 In order for the Dynamic Analysis to be performed at least one component should have been

generated using one of the available Component Makers (see 1.3.7).

 For the needs of this section we are going to introduce and work with the Account component

extracted from the JMoney Reuse Project. If you want to know more about the Component

Making Process please see Section 1.3.7).

To perform Dynamic Analysis for a Reuse Project in COPE:

1. Select “Dynamic Analysis” from the Analysis menu.

Figure 10- COPE’s Dynamic Analysis: Component Selection Tab

2. In the first tab (Component Selection)

a. Select the component to perform dynamic analysis and click to the “Select Component”

button. The available components extracted so far from the open project will be visible

in the ‘Available Components’ list.

b. If the selected component depends on other components, select those components using

the arrow buttons provided to the upper right area of the dialog.

c. Define the execution scenario for the component to be tested. An execution scenario

consists of a fully functional class that uses the main functionality of a specific

component.

NOTICE THAT: Many different execution scenarios can be developed and provided here for the same

component.

CASE STUDY: For the Account component of the JMoney Reuse project a possible execution scenario

could be the following:

COPE User Guide Page 20 of 65

OPEN-SME Project http://opensme.eu

public class JMoneyAccountExample {

public static void main(String[] args) {

 Account account = new Account();

 account.setMinBalance(0L);

 account.setAccountNumber("100000GKB");

 account.setCurrencyCode("EUR");

 account.setName("Joan Doe");

 account.setBank("GKBank");

 account.setComment("An artificial account");

 //add some entries in the account

 Entry entry1 = new Entry();

 entry1.setAmount(2000);

 entry1.setDescription("Salary deposit");

 entry1.setDate(new Date());

 account.addEntry(entry1);

 Entry entry2 = new Entry();

 entry2.setAmount(-30);

 entry2.setDescription("Withdrawal of 30 euros");

 entry2.setDate(new Date());

 account.addEntry(entry2);

 Vector v =account.getEntries();

 Iterator i = v.iterator();

 while (i.hasNext()) {

 Entry e = (Entry) i.next();

 System.out.println(

 "Entry date:" + e.getDate() + " Entry amount: " +

 e.getAmount() + " <"+e.getDescription() + ">");

 }

}

}

In this case, the execution scenario is a class (JAccountExample) which exercises the main functionality

of the Account class in its main method.

d. Click the “Choose” button and browse to the class representing the execution scenario (e.g.

COPE User Guide Page 21 of 65

OPEN-SME Project http://opensme.eu

for the Account Component, JAccountExample.java)

Figure 11- Selecting an execution scenario

e. If the execution scenario class is a JUnit test, check the checkbox “is Junit”.

f. Provide a description for the selected component in the “Description” text area. This

documentation, if provided, will be included in the HTML generated documentation for the

component tests (see Section Performing Dynamic Analysis).

3. In the second tab (Coverage)

Figure 12- Dynamic Analysis: Coverage Tab

COPE User Guide Page 22 of 65

OPEN-SME Project http://opensme.eu

a. Click to the “Compute Coverage” button.

Figure 13 – Coverage results

After the coverage computation has finished, the estimated LCSAJ and Statement coverage metrics

appear in red in the bottom of the coverage results dialog (see Figure 13 – Coverage results).

Moreover by selecting a specific method from the table in the centre of the dialog and clicking to the

“Details” button, the Reuse Engineer is prompted with a new dialog which presents new coverage

information, specifically for the selected method.

As you can see in “Figure 14 – Coverage information for Account’s setName method” this window

provides not only the LCSAJ and statement coverage metrics for the selected method but also it

visualizes the paths that were covered by the execution scenario we provided (text highlighted in green).

The same dialog provides the option of displaying the Control Flow Graph for a specific method. By

clicking the “Display Control Flow Graph” button, the control flow graph opens in a new dialog (see

Figure 15 – Control Flow Graph for Account’s setName method)

NOTE THAT: Control Flow Graph contains an extra statement “System.currentTimeMillis()_”. This

statement is placed automatically to support the tracing procedure (using AspectJ) and should be

ignored.

COPE User Guide Page 23 of 65

OPEN-SME Project http://opensme.eu

Figure 14 – Coverage information for Account’s setName method

Figure 15 – Control Flow Graph for Account’s setName method

4. In the third tab (Validation) a five step process (given in the form of tabs) guides the Reuse

Engineer through the validation phase.

a. Step 1: Class. The candidate classes include those that implement a provided interface

COPE User Guide Page 24 of 65

OPEN-SME Project http://opensme.eu

of the component or the class from which the component was extracted.

Figure 16 – Validation: Class tab

b. Step 2: Interfaces. Select Included / Exclude Interfaces. In that tab a list of provided and

required interfaces is given. The provided interfaces of the extracted component should

be added to the included interfaces list whereas the required interfaces of the component

should be added to the excluded list. In the excluded interfaces list if the required

interfaces are provided through components that have been added in the “Component

Depends on” list then it is not required to include them. Finally the reuse engineer may

add additional interface at his/hers discretion.

Figure 17 - Validation: Interfaces tab

COPE User Guide Page 25 of 65

OPEN-SME Project http://opensme.eu

c. Step 3: Scope. Select Include Exclude Scope. This defines the scope of the validation

process. The reuse engineer may select from the most general package (as it is

recommended), up to a specific class.

Figure 18 - Validation: Scope tab

d. Tests. Select Test Generation Properties. In this tab the reuse engineer must define the

input and output interfaces. Input interfaces are those that are provided by the

component and are going to be tested based on the execution scenario. In the same

manner, Output interfaces are those that are required by the component and are going to

be tested based on the execution scenario. Required interfaces should be implemented to

include them in Output list.

Figure 19 - Validation: Tests tab

COPE User Guide Page 26 of 65

OPEN-SME Project http://opensme.eu

e. AspectJ. Aspect Oriented Programming [2] is used to trace component's behaviour as it

is executed. An AspectJ7 file is generated according to the fields of 1, 2 and 3 tabs.

Reuse Engineer may make any change in the displayed code and save the changes.

Figure 20 - Validation: AspectJ tab

f. Once the AspectJ file has been generated the Reuse Engineer can proceed in performing

validation process by clicking to “Perform Validation Process” button. If no errors occur

a success message is prompted after a while.

7 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

COPE User Guide Page 27 of 65

OPEN-SME Project http://opensme.eu

Figure 21 – Validation process successfully completed

NOTE THAT: Nodes entitled "System.currentTimeMillis()_" serve tracing needs for the AspectJ part of

the validation. The Reuse Engineer may simply ignore them.

5. In the fourth tab (ProM MXML File)

This tab displays an automatically generated XML file after validation process completed successfully.

This XML file represents a Finite State Machine (FSM) automaton. The Reuse Engineer can choose to

visualize MXML by clicking to the “Visualize MXML” button to the bottom left corner of the tab. By

doing so, the aforementioned FSM is being transformed from its XML version to a user friendlier, graph

like version (which is available in a newly created tab named “FSM Visualization”).

Figure 22 – ProM MXML file tab

6. In the fifth tab (Mappings)

Maps the states of the FSM automaton produced in the previous step with methods of the selected

component and presents them in a tabulated form.

COPE User Guide Page 28 of 65

OPEN-SME Project http://opensme.eu

Figure 23 – Dynamic Analysis: State Mappings

NOTE THAT: Special characters (in the Variable Mappings section) stand for:

 ?g – The specific variable is global, therefore it affects component’s behaviour

 ?0, ?1, ?2, …, ?N – Applies to the first, second, …, Nth parameter

COPE User Guide Page 29 of 65

OPEN-SME Project http://opensme.eu

Figure 24 – Dynamic Analysis: Variable Mappings

7. In the sixth tab (FSM Visualization)

In this tab the Reuse Engineer can view the contents of the ProM MXML File in a user friendlier

version (a graph). Since the resulting FSM can be complex, the tab offers zoom in and zoom out

capabilities in order to make it easier for the Reuse Engineer to focus on specific parts of the automaton

(if needed).

COPE User Guide Page 30 of 65

OPEN-SME Project http://opensme.eu

Figure 25 – Dynamic Analysis: Visualize FSM tab

8. In the seventh tab (ModelJUnitFile)

This tab uses an external tool, ModelJUnit, to automatically generate functional tests for the selected

component. By clicking “Generate Functional Tests” for the first time, the Reuse Engineer is prompted

with a dialog that contains detailed guidelines on how to download and use the ModelJUnit external

tool.

COPE User Guide Page 31 of 65

OPEN-SME Project http://opensme.eu

Figure 26 – Guidelines to use ModelJUnit as an external tool

NOTE THAT: After the ModelJUnit code is created, some methods must be implemented manually by

the Reuse Engineer in order for the Functional test to be correct. More specifically, in the generated code

the Reuse Engineer should find the following line and implement the methods (which are grouped) after

that line:

//---------- TODO IMPLEMENT METHODS IN THIS SECTION TO GENERATE OBJECTS -----------

Figure 27 – Dynamic Analysis: ModelJUnit generated code

COPE User Guide Page 32 of 65

OPEN-SME Project http://opensme.eu

9. In the eighth tab (HTML Report)

Reuse engineer has the option of generating an HTML report with all the information provided by the

Dynamic Analysis Process.

When this option is first visited, all available options are automatically selected to be generated. The

Reuse Engineer however maintains the option of customizing the report depending on its needs.

CASE STUDY: In the following image, the Reuse Engineer has selected to generate a report containing

coverage information for all the available classes of the JMoney Reuse Project.

Figure 28 – Customized Dynamic Analysis HTML report

The generated report is located in the “tests” of the generated component under a directory entitled

“doc”. It presents the aforementioned information as a set of HTML pages.

CASE STUDY: In the following images, you can see the Dynamic Analysis HTML report generated

using the options of “Figure 28 – Customized Dynamic Analysis HTML report”

COPE User Guide Page 33 of 65

OPEN-SME Project http://opensme.eu

Figure 29 – Dynamic Analysis HTML Report: Component Description

Figure 30 - Dynamic Analysis HTML Report: Coverage Report (generic)

COPE User Guide Page 34 of 65

OPEN-SME Project http://opensme.eu

Figure 31 - Dynamic Analysis HTML Report: Coverage Report (method view pt. 1)

Figure 32 - Dynamic Analysis HTML Report: Coverage Report (method view pt.2)

1.3.5.5 PERFORMING HISTORY ANALYSIS

The reuse engineer can select to import the history of the project development changes. Currently we

only support Subversion repositories. The reuse engineer can use the svn log command with the --xml

option to extract the development history and save the results in an XML file. Then we can use the

history analysis menu option to import this file in the database.

Notice that although we support importing these development history facts in COPE's database, currently

we are not using this analysis for the recommendation of components, since initial research results were

inconclusive. However we have maintained the feature of importing these facts for further research.

1.3.5.6 PERFORMING PATTERN ANALYSIS

COPE User Guide Page 35 of 65

OPEN-SME Project http://opensme.eu

Pattern analysis is scanning the source code of the Reuse Project for patterns. Not only it identifies the

type of the pattern but it is also able to determine the classes that participate on this specific pattern.

To perform Pattern Analysis for a Reuse Project in COPE:

1. Select “Pattern Analysis” from the Analysis menu.

2. In the dialog that appears click to the Start button.

3. When the generation is complete (the progress bar has reached 100%) you can close the process

dialog using the “X” button.

Figure 33- COPE’s main window after Pattern Analysis

CASE STUDY: As you can see in “Figure 33- COPE’s main window after Pattern Analysis” after

performing Pattern Analysis for the Reuse Project JMoney in the main window of COPE, some classes

are identified as participants in patterns (the ones in the red border are indicative).

1.3.6 CLUSTER RECOMMENDATION

Using the Cluster Recommendation options, the Reuse Engineer can easily come up with some

recommendations of class clusters that could form possible components. For the time being COPE

provides two methods for recommending such class clusters:

 Dependencies Recommender: uses a genetic algorithm in order to form class clusters using the

source code of the Reuse Project.

 Pattern Recommender: forms a cluster for each pattern detected in the source code of the

Reuse Project.

For component extraction another very useful approach is to select a class and extract a component

based on this class. The resulting component will have the interface of the public methods of the class

and will include all the required classes for the reuse of this class. The reuse engineer can select this

class based on the metrics that are presented in the main window, and especially the Cluster Size, Layer

and R (reusability index) metrics. Classes which are lower in the layered digraph of the project (have

COPE User Guide Page 36 of 65

OPEN-SME Project http://opensme.eu

small layer value), have few dependencies (have small Cluster Size) and have larger R value (are more

reusable) are good candidates for reusable components. The reuse engineer can extract components by

right-clicking any class from the main window that seems promising based on the aforementioned

metrics and extract a component for this class. This same process is also available from the menu item

“Component Makers → Dependency Maker” which will be discussed later in Section “1.3.7”. Strictly

speaking however this is not a recommender although it is an effective way to extract reusable

components, and this is why is not provided as a separate option from the

“Recommend Clusters” menu.

NOTE THAT:

 Since Dependencies Recommender uses a genetic algorithm, each time it runs for the same

Reuse Project can lead to different clusters.

 In order for the Pattern Recommender to run, pattern analysis should have been performed first.

1.3.6.1 RUNNING THE DEPENDENCIES RECOMMENDER

To run the Dependencies Recommender for a Reuse Project in COPE:

1. Select “Dependencies Recommender” from the Recommend Clusters menu.

2. If Dependencies Recommender has already run once, the following dialog offers the Reuse

Engineer the option of choosing between keeping the current results or run Dependencies

Recommender from scratch.

Figure 34 – Introductory dialog to Dependencies Recommender

3. If no errors occur COPE provides the Reuse Engineer with the following dialog

COPE User Guide Page 37 of 65

OPEN-SME Project http://opensme.eu

Figure 35 – Dependencies Recommender main dialog

 In the red area, the Reuse Engineer can find all the recommended clusters proposed by the

Dependencies Recommender.

 By selecting a cluster, the class files of this cluster appear in the green area. The Reuse

Engineer can move classes from one cluster to another simply by right-clicking to one of the

classes located to the green area and selecting the cluster to which he wishes the selected class to

be moved. Finally, classes can also be moved in an artificial cluster, the “GlueCluster”, which

serves as a pool for classes that do not fit to any of the proposed clusters. For each class a

specificity metric of the class for the cluster is provided in parentheses. This value is the ratio

of other classes in the cluster depending on the class divided by the total number of classes in

the cluster. Specificity can be used to assist a reuse engineer in deciding if a class belongs to the

cluster that it was classified to, or that it should be moved to a different cluster. Right-clicking in

the cluster classes’ the reuse engineer can choose to sort the classes based on their specificity to

quickly view the most and less specific classes in a cluster.

 Apart from the class list, selection of the cluster also results in its UML diagram’s generation.

This diagram is located in the blue area of the dependencies recommender dialog. UML graphs

are generated using UMLGraph8.

 Finally, the brown area provides extra information about the keywords derived from Latent

Semantic Analysis and Tag Cloud analysis (see Source File Indexing). This information is

available in Cluster and Class level. This information can provide the reuse engineer with hints

on the purpose of the cluster and the purpose of each class in the cluster.

1.3.6.2 RUNNING THE PATTERN RECOMMENDER

To run the Pattern Recommender for a Reuse Project in COPE:

1. Select “Pattern Recommender” from the Recommend Clusters menu.

8 http://www.umlgraph.org/

COPE User Guide Page 38 of 65

OPEN-SME Project http://opensme.eu

2. If Pattern Recommender has already run once, the following dialog offers the Reuse Engineer the

option of choosing between keeping the current results or run Pattern Recommender from scratch.

Figure 36 – Introductory dialog to Pattern Recommender

3. If no errors occur COPE provides the Reuse Engineer with the following dialog

Figure 37 – Pattern Recommender Main Dialog

This dialog is identical to the Dependencies Maker’s. The only difference is that in Patter Recommender

dialog, instead of clusters the Reuse Engineer sees all patterns of the Reuse Project, detected during the

Pattern Analysis phase (see Pattern Analysis).

1.3.7 COMPONENT MAKING

Based on the analyses and recommendations carried out earlier the Reuse Engineer can now produce

independent software components and then place those components in the repository using the

‘Knowledge Manager’ feature. In this section we discuss the different component makers available in

COPE. These component makers are available from the “Component Makers” menu. Currently there are

four different component makers:

COPE User Guide Page 39 of 65

OPEN-SME Project http://opensme.eu

1. Interface Maker: This component maker uses as input the clusters produced by the

“Dependencies Recommender” (see Section 1.3.6.1). The Reuse Engineer can select one of the

clusters produced there and extract a component for this class cluster.

2. Dependency Maker: This component maker presents all the classes of the project along with

their reusability assessment. The reuse engineer can select a class and extract a component

providing the functionality of the selected class. The extracted component will contain the class

and its dependencies. Notice that the same functionality is also available from COPE's main

window by right-clicking a class and selecting “Extract component from here” (see Figure 38 –

Extracting component from classes selected in the main window of COPE).

3. Adapter Pattern Maker: This component maker presents the clusters produced by the 'Pattern

Recommender' (see Section 1.3.6.2) and displays clusters involved in Adapter pattern instances.

The reuse engineer can select a cluster and extract a component for this cluster. The component

will have the interface of the adapter.

4. Proxy Pattern Maker: This component maker presents again the clusters produced by the

“Pattern Recommender” but this time it displays only clusters involved in Proxy pattern

instances. The reuse engineer can select a cluster and extract a component for this cluster. The

component will have the interface of the proxy.

The dialog displayed in all cases is the same and the results of this process are the same (an independent

component). Therefore we will explain here only the second component maker (the Dependencies

Maker). The process for the other makers is exactly the same with the caveat the extracted components

have the semantics mentioned in the previous list.

Figure 38 – Extracting component from classes selected in the main window of COPE

1.3.7.1 RUNNING THE DEPENDENCIES MAKER

To run the Dependencies Maker for a Reuse Project in COPE:

1. Select “Dependencies Maker” from the Component Makers menu.

COPE User Guide Page 40 of 65

OPEN-SME Project http://opensme.eu

Figure 39 – Dependency Maker main dialog

 In the red area the Reuse Engineer can see all the classes (their fully qualified names) of the

Reuse Project along with their “Class Type” and “Reusability Index” (for learning more about

the Class Type and Reusability Index information please see Performing Static Analysis section)

 In the green area COPE provides the available “Interface Generation Policies” for the Reuse

Engineer to choose. More specifically these are:

o Generate Interface for Selected Class: with this option, COPE automatically generates

an interface only for the class selected by the Reuse Engineer.

o Generate Interfaces for Externally Referenced Classes: with this option, COPE

automatically generates interfaces for all classes that are included in the generated

component and also are referenced from project classes that are not included in the

selected component.

o Generate Interfaces for Classes that are not used: with this option, COPE

automatically generates interfaces for all the classes that are members of the selected

component the Reuse Engineer is about to create and they are not used by any class of

the component.

NOTE THAT: The Reuse Engineer can select more than one of the aforementioned “Interface

Generation Policies” using the CTRL button.

 In the blue area the Reuse Engineer gives a name to the component and he can generate the

component by clicking the “Generate Component” button.

 Once the component has been successfully generated, its files are listed in the brown area.

COPE User Guide Page 41 of 65

OPEN-SME Project http://opensme.eu

Figure 40 – Dependency Maker dialog after a component was successfully generated

Extracted components will be opened for further processing using an IDE (e.g. Eclipse or NetBeans).

The reuse engineer will use the IDE to comprehend the component, create test cases for it or execution

scenarios, discover further dependencies that are required which are not recoverable through static

analysis (e.g. data dependencies). The component can then be tested dynamically (as described in

Section 1.3.5.4) using the test cases or execution scenarios that were developed by the reuse engineer.

Next we will discuss the component extracted from the component makers and have a closer look to

their structure before looking at importing these components in the COMPARE component repository

with the help of the Knowledge Manager.

1.4 COPE’S COMPONENTS STRUCTURE

As we have already mentioned, COPE is a set of tools that assist the reuse engineer to produce

autonomous, fully functional components. These components apart from the source code consist also of

a variety of accompanying meta-data. All this information is being packaged as depicted in the following

figure.

Notice that components are generated in the project’s folder which resides in user’s home directory

(usually in /home/<username>). The project folder will have the name of the project provided by the

reuse engineer during the project creation. In this folder there will be a folder called ‘generated’ in

which different folders will be created (one for each generated component). The component folder will

have the component name provided by the reuse engineer (see Figure 40) and will contain sub-folders as

depicted in Figure 41. The project folder will look similar to the one depicted in Figure 42.

COPE User Guide Page 42 of 65

OPEN-SME Project http://opensme.eu

Figure 41: COPE generated components’ packaging

COPE User Guide Page 43 of 65

OPEN-SME Project http://opensme.eu

Figure 42: Project Folder

1.4.1 ROOT DIRECTORY (COMPONENT’S NAME)

The root folder has the name of the generated component and includes all the available information for

this specific component.

1.4.2 README.TXT

A summary for the generated component.

 A short description of the functionality of the component

 The name of the Free/Libre Open Source Project from which the component was extracted

 The type of license (or licenses) under which the source code of the component was published

 The programming language of its source code

 Information about other technologies used by the component (if any)

 Information about other components used by the component (if any)

 The domain concept of the component

1.4.3 SOURCE DIRECTORY (SRC/)

The source directory contains the source code of the extracted component. It also contains all the

provided interfaces generated automatically by COPE.

1.4.4 LIBRARIES DIRECTORY (LIB/)

The libraries directory contains all the necessary external libraries in order for the component to be

COPE User Guide Page 44 of 65

OPEN-SME Project http://opensme.eu

runnable.

1.4.5 DOCUMENTATION DIRECTORY (DOC/)

The documentation of the source code and UML class diagrams for the class files of the component.

Both the documentation and the UML diagrams can be generated using appropriate free or commercial

software.

1.4.6 TEST DIRECTORY (TEST/)

Test material for the extracted component. Contains:

 Execution Scenario (directory)

o Line, Path and Test coverage information

o Execution scenarios used by the Reuse Engineer for the specific component

o Generated test cases and possible ModelJUnit models

 Generated documentation (in form of HTML) including the results of the testing process

(directory)

1.5 THE KNOWLEDGE MANAGER

The Knowledge Manager provides the Reuse Engineer with a way of providing meta-information for the

components s/he generates. Moreover s/he can classify those components to a specific domain and

concept.

Moreover, the Knowledge Manager serves as an intermediate between the COPE platform and the

component repository of COMPARE.

COPE User Guide Page 45 of 65

OPEN-SME Project http://opensme.eu

Figure 43 – Knowledge Manager: Main dialog

Components (tab): in this tab the Reuse Engineer can navigate through all the available generated

components of COPE using the menu to the left. As you see in “Figure 43 – Knowledge Manager: Main

dialog” there are some predefined categories (tiers) for the generated components [3]. More specifically:

 Enterprise: These components represent enterprise-level concepts. For example an Account

component falls into this category, because it represents a business concept of the Accounting

business domain.

 Resource: These components represent more low-level infrastructure software components. For

example a DatabaseUtil component providing functions for storing, retrieving etc. data from a

database would fall into this category. Notice that an Enterprise component may contain

internally a resource component (e.g. an Account component would include internally a

component for accessing, storing, removing etc. accounts from a database). Usually when these

lower-layer components are encapsulated by an enterprise component their interface is hidden

from external reusers, however in some cases they may be useful by themselves (e.g. a logging

component, or an email component).

 User: These components represent user interface level components (for example an

AccountCreationDialog component could be useful for creating accounts from the user

interface)

 Workspace: These components represent workflow or session handling software components.

For example a reuser could reuse a component that handles the creation of an Account by

copying data from another Account. The component that handles the transaction of moving the

information from one Account component to the other, could be a Workspace component.

COPE User Guide Page 46 of 65

OPEN-SME Project http://opensme.eu

 Unknown: This category contains the components that have been generated using COPE but

were not associated with one of the aforementioned tiers by the Reuse Engineer.

Languages / Technologies (tab): in this tab the Reuse Engineer can add or remove programming

languages (e.g. Java, C, C++, etc.) and technologies (e.g. J2SE, J2ME, etc.) relative to the components

he works with.

Open Component Classification Console (tab): this tab helps the reuse engineer to classify his

components with the use of MetaModel, domains and concepts. More specifically:

 A MetaModel group is a category of Meta-Models associated with an application domain (e.g.

E-Business domain could represent a MetaModel group).

 A MetaModel is a model representing concepts from the business domain and their associations

(e.g. Accounting MetaModel could be a MetaModel of the E-Business domain). Such a meta-

model can be reused if available or constructed as the reuse engineer discovers concepts of

application domains as s/he reverse engineers existing OSS systems.

 A domain is a specific area or market segment for which applications are being developed (e.g.

Accounting domain).

 A concept is a specific entity or activity relating to an application domain (e.g. Account,

Business Transaction, Shopping Cart etc.)

NOTE THAT: The data provided at the component classification console is optional and is

expected to start taking shape as the reuse engineers are using the COPE platform to create

components. It is estimated that at least 3 systems are necessary as input to a domain engineering

process. To avoid the antipattern of domain analysis paralysis [4], COPE does not require that reuse

engineers should build application domains MetaModels before starting extracting and providing

components for reuse. Instead components can be reused and the domain MetaModel along with its

concepts can be formed as the reuse organizations become more mature and systematic in their reuse

processes. In other words, we anticipate that the usage of COPE will provide a gradual and iterative

path towards systematic reuse.

1.5.1 CHARACTERIZING A GENERATED COMPONENT

Component characterization consists of a series of information the Reuse Engineer needs to specify for a

generated component. As you can see in the following image, this information is:

 SVN repository: The SVN address from where the packaged component can be downloaded.

 Version: The version of the component

 License: The license under which the component can be reused

 Language: The programing language to which the component was implemented

 Technologies: A specific technology with which the component was designed

 Description: A description of the main functionality of the component

 Uses components: Possible dependencies to other components

 Classification details: MetaModel, domain and concept(s) specification for the component

NOTE THAT:

 In order for the information to be saved you need to use the “save” buttons located to the right of

COPE User Guide Page 47 of 65

OPEN-SME Project http://opensme.eu

each form field.

 All fields are optional. This means that every field can be left empty and be updated later on.

 In the classification details the Reuse Engineer can specify multiple concepts but only one

MetaModel and domain.

 The contents of the fields of “Language”, “Technology” and “Classification Details” can be

dynamically changed by the Reuse Engineer.

Figure 44 – Characterizing a component

1.5.2 ADDING / REMOVING / RENAMING LANGUAGES AND TECHNOLOGIES

The content of the fields of Language and Technology can be managed by the Reuse Engineer using the

“Languages / Technology” tab. As you can see in the following image, in this tab, there are two

separated areas that provide the Reuse Engineer with the options of adding, removing and renaming

Languages and Technologies at will.

COPE User Guide Page 48 of 65

OPEN-SME Project http://opensme.eu

Figure 45 – Managing Languages and Technologies dialog

Figure 46 – J2ME technology added

NOTE THAT: The changes made using this dialog become automatically available to “Knowledge

Manager” as you can see in the following image the “J2ME” technology we added in the previous step is

now available to the “Components” tab.

COPE User Guide Page 49 of 65

OPEN-SME Project http://opensme.eu

Figure 47 – J2ME technology available at the Components Tab

1.5.3 CLASSIFYING COMPONENTS

Classifying a component using the Knowledge Managers is identical to mapping the component with a

MetaModel. Before the Reuse Engineer can do that s/he usually must create such a MetaModel using the

“Open Component Classification Console” tab of Knowledge Manager.

Figure 48 – The main dialog of the Component Classification Console

A MetaModel consists of three parameters:

 Domain (unique)

COPE User Guide Page 50 of 65

OPEN-SME Project http://opensme.eu

 Conpept(s)

 Tier (optional)

In order for the Reuse Engineer to be able to define such a meta-model, the appropriate domain and

concept(s) should have been created beforehand.

1.5.3.1 ADDING A NEW CONCEPT

1. Go to the “Concepts” tab of the Components Classifying Console

2. Right-click to “Concepts” element located to the left area of the dialog

3. From the pop-up menu choose “Add Concept”

4. In the dialog that appears type the name of the new concept

5. Click “OK” (at this step you can also abort the new concept creation by clicking on “Cancel”)

1.5.3.2 ADDING A NEW DOMAIN

1. Go to the “Domains” tab of the Components Classifying Console

Follow steps 2 to 5 of the “Adding a new concept” process (see Adding a new Concept)

1.5.3.3 ASSIGNING CONCEPTS TO DOMAINS

After a domain has been created the Reuse Engineer can assign concepts to it. In the following image we

have just created the “Accounting” domain and we need to assign the concept “Account” to it.

COPE User Guide Page 51 of 65

OPEN-SME Project http://opensme.eu

1. We click on the “Select” button located in the right area of the dialog (see Figure 49 – Assigning

concept to domain)

Figure 49 – Assigning concept to domain

2. In the dialog that appears (“Select Concept”) select the concept you want to assign.

Figure 50 – Select concept dialog

3. Click to the “OK” button

COPE User Guide Page 52 of 65

OPEN-SME Project http://opensme.eu

Figure 51 – Concept successfully assigned to a domain

The concept “Account” was successfully assigned to the “Accounting” domain.

NOTE THAT: If you go to the “Concepts” tab and select the “Account” concept you will see that the

“Accounting” domain was automatically defined as the domain of the “Account” concept.

COPE User Guide Page 53 of 65

OPEN-SME Project http://opensme.eu

Figure 52 – Domain successfully assigned to concept

1.5.3.4 CREATING THE METAMODEL

Having crated the necessary concepts and domains the Reuse Engineer can now proceed with creating a

MetaModel.

NOTE THAT: For COPE, each MetaModel should be a member of a MetaModel group.

COPE User Guide Page 54 of 65

OPEN-SME Project http://opensme.eu

Figure 53- Component MetaModels Dialog

To create a MetaModel:

2. Go to the “Component MetaModels” tab of the Components Classifying Console

3. Right-click to “MetaModels” element located to the left area of the dialog

4. From the pop-up menu choose “Add Group”

5. In the dialog that appears type the name of the new MetaModel group

6. Click “OK” (at this step you can also abort the new concept creation by clicking on “Cancel”)

COPE User Guide Page 55 of 65

OPEN-SME Project http://opensme.eu

Figure 54 – MetaModel group successfully created

Once the MetaModel Group is created:

1. Right-click to the name of the MetaModel group

2. From the pop-up menu choose “Add MetaModel”

3. In the dialog that appears type the name of the new MetaModel

4. Click “OK” (at this step you can also abort the new concept creation by clicking on “Cancel”)

COPE User Guide Page 56 of 65

OPEN-SME Project http://opensme.eu

Figure 55 – MetaModel successfully created

After the successful creation of the MetaModel, the reuse engineer can now assign a domain to the

MetaModel.

To do so:

1. Click to “Select” button located to the “Has Domain” of the Component Classification Console

2. From the dialog that appears, select the appropriate domain and click “OK”.

COPE User Guide Page 57 of 65

OPEN-SME Project http://opensme.eu

Figure 56 – Domain selection window

As you can see in the following image the domain is now selected. In addition the concepts associated

with this domain have also been set to the “Concepts” area of the MetaModel.

NOTE THAT: All the dialogs of the Knowledge Manager that allow the Reuse Engineer to add elements

also allow removal and renaming of those elements.

Figure 57 – Metamodel successfully created

With the creation of the MetaModel the Reuse Engineer has all the necessary information to classify the

COPE User Guide Page 58 of 65

OPEN-SME Project http://opensme.eu

component. To do so s/he must return to the main dialog of the Knowledge Manager by visiting the

“Open Component Classification Console” tab.

1.5.3.5 CLASSIFYING THE COMPONENT

1. From the components tab located in the main dialog of the Knowledge Manager select the

component you wish to classify (usually located under the “_Unknown” group).

2. Right-click to the component.

3. From the pop-up menu that appears choose “Classify”.

4. The “Select Metamodel” dialog appears. Choose the metamodel and click to the “OK” button.

Figure 58 – Classifying a component

COPE User Guide Page 59 of 65

OPEN-SME Project http://opensme.eu

Figure 59 – MetaModel selection

Once the MetaModel is selected the classification details area for the component is automatically

updated.

Figure 60 – Component classification successfully finished

NOTE THAT: The classification of a component can easily change by right-clicking to the component

and choosing “De-classify” and then repeating the process of classifying from scratch.

COPE User Guide Page 60 of 65

OPEN-SME Project http://opensme.eu

1.5.3.6 SELECTING TIERS

The Reuse Engineer can easily set the “Tier” for a component from the main dialog of the Knowledge

Manager.

1. From the components tab located in the main dialog of the Knowledge Manager select the

component (usually located under the “_Unknown” group).

2. Right-click to the component.

3. From the pop-up menu that appears choose “Change Tier”.

4. The “Select Tier” dialog appears. Choose the appropriate tier and click to the “OK” button.

Figure 61 – Select tier dialog

The tier was successfully changed.

1.5.4 SYNCHRONIZING WITH COMPARE REPOSITORY

Once the reuse engineer has finished the characterization and classification for one or more of the

generated components he can synchronize those changes with the COMPARE repository.

1. Click on the phrase “The semantic repository is not synchronized with COMPARE. Click here to

synchronize” located in the bottom of the Knowledge Manager. The synchronization dialog appears.

COPE User Guide Page 61 of 65

OPEN-SME Project http://opensme.eu

Figure 62 – Synchronization process between COPE and COMPARE

If no errors occur, the following dialog appears informing the Reuse Engineer that the synchronization

was completed successfully.

Figure 63 – Successful synchronization message

Also, the indication in Knowledge Manager’s main dialog changes to “The semantic repository is

synchronized with COMPARE”.

COPE User Guide Page 62 of 65

OPEN-SME Project http://opensme.eu

Figure 64 – Knowledge Manager’s main dialog after

the successful completion of the synchronization process

1.6 KNOWN ISSUES & WORKAROUNDS

In this section we provide some known issues and possible workarounds for the COPE platform. The

information is organized in subjects to make navigation easier and more efficient.

1.6.1 DOCUMENTATION GENERATION

Known Issue: When the .jar file of a F/LOSS project and the given source code are not identical (in

terms of files) malfunctions are likely to occur in the documentation generation process.

Workaround: Reuse Engineers are advised to manually produce the .jar file of the target F/LOSS

project by compiling its source code.

1.6.2 DYNAMIC ANALYSIS

1.6.2.1 COVERAGE

Known Issue: Methods that are not included in try blocks and throw exceptions, are not connected to

the end of the method in the control flow graph. Due to that, LCSAJ might be missing some paths

Known Issue: Break labels are not recognized, so they are treated as simple statements in cfg. Due to

that, LCSAJ might be missing some paths.

COPE User Guide Page 63 of 65

OPEN-SME Project http://opensme.eu

Known Issue: Over-approximated connection is used in methods inside try-block (meaning that every

method call is connected to a catch statement). This might lead in generation of infeasible paths in

LCSAJ

Known Issue: Ternary operators are not recognized, they are treated as simple statements. Due to that

LCSAJ might be missing some paths.

1.6.2.2 VALIDATION

Known Issue: Components using classes from “java.utils” package raise exceptions in validation

process.

Known Issue: Components generating huge state traces files (~3.000.000 lines) can’t pass the validation

process successfully yet (e.g. components reading / writing bytes of images).

1.6.3 COMPONENT MAKERS

Known Issue: When the .jar file of a F/LOSS project and the given source code are not identical (in

terms of files) malfunctions are likely to occur in the component making process (regardless of the

component maker used).

Workaround: Reuse Engineers are advised to manually produce the .jar file of the target F/LOSS

project by compiling its source code.

COPE User Guide Page 64 of 65

OPEN-SME Project http://opensme.eu

2. REFERENCES
1. E. Gamma, R. Helm, R. Johnson, και J. M. Vlissides: “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley Professional, 1994.

2. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc

Loingtier and John Irwin: “Aspect-oriented programming”, 11th European Conference on Object-

Oriented Programming (ECOOP’97), LNCS vol. 1241/1997, pp. 220-242, Springer, 1997.

3. P. Herzum and O. Sims: “Business Component Factory : A Comprehensive Overview of

Component-Based Development for the Enterprise”, Wiley, 1999.

4. J. Long: “Software reuse antipatterns”, SIGSOFT Softw. Eng. Notes, vol. 26, no. 4, pp. 68-76,

2001.

