COPE
User
Guide

A guide on using the Component Adaptation Environment (COPE)

COPE User Guide Page 1 of 65
Table of Contents

ABBREVIATIONS ...ttt e et be e e be e e s b e enes 6
1. COPE USER GUIDE.. ...ttt e e saae e arae e 7
1.1 N0l 016 0x 1 (o] N TP OUPPPURRR 7
1.1.1 COPE: PUIPOSE & SCOPE ...veiiiieieiieie it e ittt e sie et sbee e saaeesae st e e ssbeeestaeessaessnbaeesnreeareeans 7
1.1.2 Before you start USiNg COPEccccoiiiiieii et 7
1.2 INSTALLING COPE ..ottt et bbbt 8
121 Minimum SyStem REQUITEMENTS.ccoiiiieieiieieeeee e 8
1.2.2 SOTtWAIE PIEIrEQUISTIESovitiiiieieieieesie sttt 9
1.2.3 INSEAATION PrOCESSviiiieiiitecie ettt sttt et esaesteeseesaesreeneenne s 9
1.3 USING COPE ...ttt e et e e e bb e e e baeennes 9
131 Preparing a F/LOSS project for COPE ..ot s 10
1.3.2 EXITING COPE ...ttt sttt ettt sne s 10
1.3.3 Creating a NEW REUSE PrOJECT......cciv ettt st 10
1.34 Opening an existing REUSE PTOJECEcccviiiiiiicce ettt 12
1.35 Analyzing a Reuse Project With COPEcccccoiv i 13
1.3.5.1 Performing Static ANAIYSISc.coiveiiieiie e 13
1.3.5.2 Performing Source File INAEXING.......ccceiiiiiiiiiieie ettt esrae e 16
1.3.5.3 Performing Documentation GENEFatioNccecverieiiereere e 17
1.3.5.4 Performing DYyNamic ANGIYSISccceiiieiiiiiiie et 18
1.3.5.5 Performing HiStory ANAIYSIS........c.coiuiiieiiiiece ettt te et enre e 34
1.3.5.6 Performing Pattern ANIYSIS........c.coiiiiieiiiiiiie ettt nre e 34
1.36 Cluster ReCOMMENALIONooiiiieiiieee et ees 35
1.3.6.1 Running the Dependencies RECOMMENTENccuiiiieiiirieie et 36
1.3.6.2 Running the Pattern RECOMMENTENc..ooiiiiiiiieiieee e e 37
137 CompPONENt MAKING ..ottt et e enes 38
1.3.7.1 Running the DependencCies MaKETccooiiiiiiiiiiieie e 39
1.4 COPE’S COMPONENTS STRUCTUREctttttiitieiterssteestessnseessessssesssessnseessesssessseesnseses 41
141 Root Directory (Component’s NAME)..............cccucviiieieeiieiiiiiiee e 43

OPEN-SME Project http://opensme.eu

COPE User Guide Page 2 of 65

1.4.2 LT To [T30« USRS 43
143 SOUICE DIFECIONY (SIC/) vttt 43
144 Libraries DIreCtory (I1/)......ccoo oo 43
1.4.5 Documentation DIreCtory (JOC/)cuuiiiierieireieieeses e 44
1.4.6 TESt DIFECLOTY (TESL/) .veeeteieeeeeee et 44
15 THE KNOWLEDGE IMANAGER .. 1.0tiiiiiiiiiiitiet et e e et s seibibaae s s s e s s s s siasbbbeeessssssssssabsseessessssins 44
151 Characterizing a Generated COMPONENTccciiiieiiiiiiie e se e 46
152 Adding / Removing / Renaming Languages and Technologies............ccccovevvevvivenennnn, 47
153 Classifying COMPONENTScccveiiiiiie et te et sreeresre s e e srenres 49
IR T0C TN A Yo [0 [T I W4 1=V @ =T o] S 50
1.5.3.2 Adding @ nNeW DOMAINccccviiieiieiieeiee sttt s et ae e e e e e sreesteeaesnsesneesraesreens 50
1.5.3.3 Assigning Concepts 10 DOMAINSc.cciveiiiiiiiii s e e 50
1.5.3.4 Creating the MetamOUelc.eoiuiiiiiiie et sreesraesreeas 53
15.35 Classifying the COMPONENTcccueiiiiiieiee it e e sre e be e sneesnaesraenreeas 58
1.5.3.6 SEIBCHING THOIS.c.uii ittt et e e e e te s e s reesaeesteebeenbeenseaneesreesreens 60
154 Synchronizing with Compare REPOSITONYccveviieeiiie et 60
1.6 KNOWN ISSUES & WORKAROUNDS.......utteiteiiuiieitinsiieesiesanseesseessbeesseesnseessessnsesssnesses e 62
1.6.1 Documentation GENEIALIONcceueiiiieiecie et nne s 62
1.6.2 DYNAMIC ANAIYSIS ...ttt 62
L T R 070 = - To - TP PRSP RPP PP 62
LT Y £ | o F- L4 o] S 63
1.6.3 COMPONENT IMBKETS. ...ttt 63

2. REFERENCES.. ...ttt be e neeeanes 64

OPEN-SME Project http://opensme.eu

COPE User Guide Page 3 of 65

List of Figures

Figure 1 - COPE’S MAaIN WINAOWccueciiiviiiaiiiiiieesie e eiesteste et ste e testeesae e esaesrestaetesteessestesneeseestaenseseas 10
Figure 2 — New Reuse Project... dialog.......coiiiiiiiiiiiieics e 11
Figure 3- Reuse Project SUCCESSTUIlY Created..........cccviveie i 12
Figure 4- Open Reuse Project... dialogcoocviiiiiiiiiniiieicieise s 13
Figure 5- COPE performing Static ANAIYSISccveiiiiiicieceeie ettt sttt 15
Figure 6- COPE’s main window after a successful static analysisccccooereiisiiiiinienienineneeeeins 15
Figure 7- COPE performing Source File INdeXiNg.......ccccoiiiiiiiiiccce et 16
Figure 8- Searching for classes using COPE’s internal search engineccccceovrvrenenenenenensinennnens 17
Figure 9-Documentation for the class Account of the JMoney Reuse Projectcccccvvvevvevievicvcceeinee. 18
Figure 10- COPE’s Dynamic Analysis: Component Selection Tab..........cccceiviiiiiiiniiniinieneneeieens 19
Figure 11- Selecting an eXECULION SCENANIO........ciiveiiiiireie e ce et ste e sre e esre e reste e e tesreesresraeneennas 21
Figure 12- Dynamic Analysis: COVEIage Tabccccooeiiiiiiiiiiisiisie e 21
FIgUre 13 — COVEIAgE FESUISeciiiie ittt e et et sbe et e e besreesresteenresnas 22
Figure 14 — Coverage information for Account’s setName methodccceoviiiiiniininineneeeee 23
Figure 15 — Control Flow Graph for Account’s setName methodccoccovreiiriiniiiiniiccc e 23
Figure 16 — Validation: ClaSs TaD..........couoiiiiiiie et 24
Figure 17 - Validation: INterfaces tahccccviiiiiii ittt 24
Figure 18 - Validation: SCOPE T8Icveiiiiiiiiieree et 25
Figure 19 - Validation: TeSIS 1Dccciiiiiecc e sttt sbe st re et spa e eras 25
Figure 20 - Validation: ASPECTI TaD.......cuiiiiiiiiei e 26
Figure 21 — Validation process successfully completed ..o 27
Figure 22 — ProM MXML File TD.........oiviiiii e 27
Figure 23 — Dynamic Analysis: State MapPingS.......ccoveuerereereie ettt ee e 28
Figure 24 — Dynamic Analysis: Variable Mappings ... 29
Figure 25 — Dynamic Analysis: Visualize FSM tah ... 30
Figure 26 — Guidelines to use ModelJUnit as an external to0lccoiveiieiiiiiin e 31

OPEN-SME Project http://opensme.eu

COPE User Guide Page 4 of 65

Figure 27 — Dynamic Analysis: ModelJUnit generated COE..........coviiiiieriiiiie e 31
Figure 28 — Customized Dynamic AnalysiS HTML FePOItc.cccvevieiiiiieieiecie e 32
Figure 29 — Dynamic Analysis HTML Report: Component DesCriptionccoovvvrireneneneneisieinnens 33
Figure 30 - Dynamic Analysis HTML Report: Coverage Report (QENEricC)......ccoovuvveieveeieenieseeresieeinene 33
Figure 31 - Dynamic Analysis HTML Report: Coverage Report (method view pt. 1).......c.ccccevvieiieinnnns 34
Figure 32 - Dynamic Analysis HTML Report: Coverage Report (method view pt.2)......c.ccccoevevvivenenne. 34
Figure 33- COPE’s main window after Pattern Analysis...........cociviiiiiineiiiis e 35
Figure 34 — Introductory dialog to Dependencies RECOMMENENcovviveiieiesieie e 36
Figure 35 — Dependencies Recommender main dialog..........ccoovviiiiiineneieeecsse e 37
Figure 36 — Introductory dialog to Pattern RECOMMENENcccveiiiiiiieiiiece et 38
Figure 37 — Pattern Recommender Main Dialog..........cccooiiiiiiiiiiiiiieeeee e 38
Figure 38 — Extracting component from classes selected in the main window of COPE.......................... 39
Figure 39 — Dependency Maker Main dialogcccoverieriiiiiiiiisise e 40
Figure 40 — Dependency Maker dialog after a component was successfully generated...........c.ccccvennene. 41
Figure 41: COPE generated components’ packaging..........coovreerrereeeinrenieeneseereseseesreseessesresneesnesseennens 42
T U Y o (o T =Tot A] o [T SRS S TSR 43
Figure 43 — Knowledge Manager: Main dialogccereieiiiniiiieieseeeees e 45
Figure 44 — Characterizing @ COMPONENTcciiiiieiieieeie ettt se e sre e s e s te e besbeessesbesaeesresteaneeseas 47
Figure 45 — Managing Languages and Technologies dialog...........ccccureiireriieiiciiiieseseeeeeesia 48
Figure 46 — J2ME technology added..........ccooviiiiiiiiiece e sttt st nas 48
Figure 47 — J2ME technology available at the Components Tabccccooeieiiiiiiiiiineeee 49
Figure 48 — The main dialog of the Component Classification Consolec.cccccoevvvvivciiiiiicvcseenee, 49
Figure 49 — Assigning CONCEPT T0 UOMAINcuviuiiiiiiiieieiei ettt eieas 51
Figure 50 — Select CONCEPL AIAlOQccveiiiiiciciec et sbe st re et sre e ras 51
Figure 51 — Concept successfully assigned t0 @ dOMAINoveiiiririnenierieieee e 52
Figure 52 — Domain successfully assigned t0 CONCEPL.........ooveiiiieeriieee e 53
Figure 53- Component MetaModels Dialog...........coviiiiiiiiiiiiiiie e 54
Figure 54 — MetaModel group SuUCCesSTUllY Createdcooeeiiieieiire s 55
Figure 55 — MetaModel SUCCESSTUIY CIAted..........coiviiiieicieiee e 56
Figure 56 — Domain SEleCtioN WINGOW...........cuiiiiie ettt sne e neas 57
Figure 57 — Metamodel SUCCESSTUIlY CrEATEMcceiviiiriiieiei e 57
Figure 58 — Classifying @ COMPONENT........cciiiiiiiee ettt st ee st e st e seesaeeneeneas 58

OPEN-SME Project http://opensme.eu

COPE User Guide Page 5 of 65

Figure 59 — MetaMOodel SEIECTION.c.ei et sre e e 59
Figure 60 — Component classification successfully finiShed ..., 59
Figure 61 — SEIeCt tIEr dIAl0Qveveeieeieieiss et 60
Figure 62 — Synchronization process between COPE and COMPARE...........ccccooiievievveic s 61
Figure 63 — Successful Synchronization MESSAGEccverveveiriririne s 61

Figure 64 — Knowledge Manager’s main dialog after the successful completion of the synchronization
O] 0T PSPPSR 62

OPEN-SME Project http://opensme.eu

COPE User Guide Page 6 of 65

ABBREVIATIONS

OPEN-SME Open Source Software Reuse Service for Small / Medium Enterprises
OCEAN Open Source Search Engine

COPE Component Adaptation Environment

COMPARE Component Repository and Search Engine

F/LOSS Free/Libre Open Source Software
UML Unified Modeling Language
CPU Central Processing Unit

RAM Random Access Memory

LCSAJ Linear Code Sequence And Jump
FSM Finite State Machine

SME Small and Medium Enterprise
SME AG Small and Medium Enterprise Association Group
SVN Subversion

E-Tier Enterprise Tier

R-Tier Resource Tier

U-Tier User Interface Tier

W-Tier Workspace Tier

XML Extensible Markup Language
ProM Process Mining

OPEN-SME Project http://opensme.eu

COPE User Guide Page 7 of 65

1. COPE User GUIDE

1.1 INTRODUCTION

This document aims in providing a complete yet simple guide in using OPEN-SME Component
Adaptation Environment (COPE). Using this document the Reuse Engineer will be able to reuse
Free/Libre Open Source Software (F/LOSS) Projects to produce autonomous, software components.

This guide presents in detail the aforementioned process of extracting components from existing F/LOSS
projects and provides real case studies that can be used as examples for the intended user.

1.1.1 COPE: PURPOSE & SCOPE

The OPEN-SME Component Adaptation Environment (COPE) tool-chain was designed to support in a
holistic manner the different activities of the Domain Engineering Process. COPE is an application with
clearly defined interfaces. Different component implementations result in different instantiations of
COPE’s tool chain to support specific modeling languages, programming languages, target platforms etc.

For the time being COPE is 100% compatible with Linux based operating systems and supports the
Unified Model Language (UML) and Java based F/LOSS Projects.

1.1.2 BEFORE YOU START USING COPE

Every F/LOSS Project selected to be analysed and reused with COPE, is being stored in the form of a
“Reuse Project”.

A “Reuse Project” serves as an extended version of a regular F/LOSS project. It combines the source
code related information (of the original F/LOSS project) with those resulted from the static analysis
process. A Reuse Project’s lifecycle consists of the following phases:

e Analysis phase: the source code of the target F/LOSS project is being analysed and the results
of this analysis are being stored in its “Reuse Project”. COPE currently supports:

1. Static Analysis: Calculates different metrics and dependencies among classes (among
other things) by statically analysing the source code (i.e. without executing the
program).

2. Source File Indexing: Creates an index of the source files suitable for free-text
searching.

1. Documentation Generation: Generates the documentation of the source code (Javadoc)
with the addition of UML diagrams for each class and package.

2. Dynamic Analysis: Analyses the program using dynamic analysis (i.e. by executing the
program). The reuse engineer uses dynamic analysis after component extraction to
understand the functioning of an extracted component, determine the coverage of the
dynamic analysis, validate the component using model-based testing techniques etc.

3. History Analysis: We store the changes that occurred in a project's development history
for Subversion repositories. Currently this feature is not used for the recommendation of
components but it may be used in the future.

4. Pattern Analysis: We use pattern detection techniques (e.g. detection of the Adapter or
Proxy design patterns [1]) to pinpoint classes that participate in design patterns. Based

OPEN-SME Project http://opensme.eu

COPE User Guide Page 8 of 65

on pattern participation we then extract components (e.g. extract a component of a
subsystem behind a proxy as a component).

Cluster Recommendation: in this phase COPE automatically suggests class clusters that could
possibly serve as reusable components. Currently, the following recommenders are available in
COPE:

1. Dependencies Recommender: Extracts components based on an analysis of the
dependencies of the classes in a project.

2. Pattern Recommender: Extracts components based on the detected patterns of the
project.

Component Making: this set of functionalities allows the user to extract components from the
reuse project by either using class clusters recommended in the Cluster Recommendation phase
or by selecting a single class that along with its dependencies will form a class cluster and
eventually the reusable component. Currently, four different component makers are available in
COPE:

1. Interface Maker: It uses a class as a starting point and creates a component that includes
all class’s dependencies (recursively).

2. Dependency Maker: It uses the clusters produced by the dependencies recommender to
create components.

3. Adapter Pattern Maker: It creates components using as starting point classes that
implement the Adapter design pattern.

4. Proxy Pattern Maker: It creates components using as starting point classes that
implement the Proxy design pattern.

Knowledge Management: in this phase the user provides information for the generated
components. Using the “Semantic Application” feature, the user can describe the functionality of
each component. Moreover s/he can classify the resulting component to a specific domain and
concept.

NOTE THAT: The aforementioned phases and options form COPE’s process in its full form. However it
is possible for some phases and / or functionalities to be omitted.

1.2 INSTALLING COPE

This section provides detailed guidelines on installing COPE to your machine. COPE was designed to be
as autonomous as possible. Therefore the prerequisites and dependencies in pre-existing software and
tools have been minimized.

In general, COPE uses a MySQL database to store all the information needed to support its processes. It
also uses the graphviz program to produce figures of UML diagrams. There are available packages for
most Linux distributions that can be used to install these requirements.

1.2.1 MINIMUM SYSTEM REQUIREMENTS

CPU: Pentium 1V, 3.2GHz, Multithreading
RAM: 2GB
Free Disk Space: 10GB

OPEN-SME Project http://opensme.eu

COPE User Guide Page 9 of 65

e Operating System: Linux

1.2.2 SOFTWARE PREREQUISITES
e Graphviz (http://www.graphviz.org)!

o MySQL (http://www.mysgl.com)

1.2.3 INSTALLATION PROCESS
From the provided CD:

1. Create the database using the script "CopeDatabase.sgl", located in "database script"” folder

a. As MySQL root user, use the command:
create database dependencies;
from the mysql command prompt.

b. Then from the OS command line issue the command:
mysal —u root —p dependencies < CopeDatabase.sql

2. Create a database user, with these credentials:
e username: copeuser
e password: opensme

From the MySQL command prompt as a root user, execute the following command:
CREATE USER ‘copeuser'@'localhost' IDENTIFIED BY ‘opensme’;

3. Give all the privileges of the database ‘dependencies’ created above, in the new user:

a. From the MySQL command prompt as a root user, execute the following command:
GRANT ALL ON dependencies.* TO 'copeuser'@'localhost';

4. Run the application from the command line with the command:
java -jar COPESwingApp.jar

1.3 UsING COPE
The main window of COPE consists of three areas of focus (see Figure 1 - COPE’s main window).
e Area A (marked with red): COPE’s main menu.

e Area B (marked with blue): Search engine intended in discovering classes within a reuse
project that match specific criteria.

e Area C (marked with green): Shows the results of the analyses for a specific Free/Libre Open
Source Software Project.

11n case Graphviz is not available COPE will still be able to run but all UML diagrams won’t be available.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 10 of 65

. |\

r The OPEN-SME Consortium

Figure 1 - COPE’s main window

1.3.1 PREPARING A F/LOSS PROJECT FOR COPE

In order for a Free/Libre Open Source Software Project to be able to serve as a Reuse Project for COPE
the following information needs to be available:

e The binary (.jar) file of the project
e Any possible external libraries (dependencies, usually in .jar format)
e The source code of the project

CASE STUDY: For this part of our guide we will be using JMoney?2 as an example. Before we proceed in
creating a new Reuse Project for JMoney in COPE we need to go through the aforementioned
preparation process (see Figure 2 — New Reuse Project... dialog) to see the specific information of
JMoney project.

1.3.2 EXITING COPE
To exit COPE:
1. Select “Exit” from the File menu.

NOTE THAT: In case you were working on a Reuse Project, possible changes are automatically saved.

1.3.3 CREATING A NEW REUSE PROJECT

To create a new Reuse Project in COPE:

2 nttp://sourceforge.net/projects/jmoney/

OPEN-SME Project http://opensme.eu

http://sourceforge.net/projects/jmoney/

COPE User Guide Page 11 of 65

2. Select “New Reuse Project...” from the File menu.

3. Provide the appropriate data (see 1.3.1) to the dialog “New Reuse Project Properties” (see Figure 2 —
New Reuse Project... dialog).

= Reuse Project Name (mandatory): The name for the Reuse Project (free text — usually the
name of the F/LOSS project to be added to COPE)

= JAR File (mandatory): Path of the binary file of the F/LOSS project.

= Dependencies (optional): Paths of the external libraries (.jar format) that serve as dependencies
to the F/LOSS project. The reuse engineer can add or remove libraries at will using the buttons
provided at the right of the form. Finally, mass addition of libraries is possible by using the
CTRL+A hotkey.

= Repository URL (optional): The URL to the SVN repository of the F/LOSS project.

= Source Code Directory (mandatory): Path to the root folder of the source code of the F/LOSS
project.

New Reuse Project Properties

Reuse Project Marme; JMoney

JARFile:; material/OPEN-SME/FLOSS/JMpney/jimoney.jar Choose

Dependencies: AE/FLOSS/IMaoney/lib/commons-logging-1.0.3 jar Add
AE/FLOSS/JMoney/lib/jasperreports-0.5.0.jar
AE/FLOSS/IMoney/lib/kunststoff-2,0.1 jar Rermove

Repository URL:

Source Code Directory: |Project material /OPEMN-SME/FLOSS/JMoney/src Choose

Create Reuse Project Cancel

Figure 2 — New Reuse Project... dialog

NOTE THAT: The name of root folder of the source code should always be “src”.

4. Click on “Create Reuse Project”. If no errors occur, the following dialog should appear. The newly
created project was successfully loaded and the given name appears to the window title (e.g.
JMoney). The dialog instructs the Reuse Engineer to continue by performing Static Analysis (see
1.3.5.1).

OPEN-SME Project http://opensme.eu

COPE User Guide Page 12 of 65

OPEN-SME Component Adaptation Environment (JMoney)

MName v & Search
Fuzzy Search

¥ JMoney Please perform static analysis to view the metrics
P onet

Figure 3- Reuse Project successfully created
The aforementioned process can be aborted at any step by clicking the “Cancel” button.

1.3.4 OPENING AN EXISTING REUSE PROJECT
To open an existing Reuse Project in COPE:

1. Select “Open Reuse Project...” from the File menu.
2. Inthe dialog that appears, select the Reuse Project.

3. Click “Open”.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 13 of 65

Select Project JMoney

Open Cancel

Figure 4- Open Reuse Project... dialog
If no errors occur the Reuse Project is loaded successfully in its latest known state. The aforementioned
process can be aborted at any step by clicking the “Cancel” button.
CASE STUDY: If we choose to open the “JMoney” Reuse Project which we created in the previous
paragraph, COPE will take us back to “Figure 3- Reuse Project successfully created ”.
1.3.5 ANALYZING A REUSE PROJECT WITH COPE

There are several analyzers available in COPE. These analyzers can be applied to any COPE Reuse
Project and provide information such as metrics, source code documentation, pattern detection, etc. This
information can assist the Reuse Engineer in the phases that follow to decide which components are
promising for extraction.

1.3.5.1 PERFORMING STATIC ANALYSIS

Static Analysis results on a specific set of information for the source code of a Reuse Project. More
specifically for each class of the F/LOSS Project participating in a Reuse Project in COPE, Static
Analysis returns:

o Class Name: The fully qualified name of the specific class.

e Type: The type of the class (e.g. “Class”, “Abstract Class”, “Interface”, etc.).
e Size: The size of the specific class (in bytes).

e Used By: Number of classes in the project that uses the specific class.

e Uses (I): Number of internal classes used by the specific class.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 14 of 65

Uses (E): Number of external classes used by the specific class.

Layer: The layer of the class. The Classycle analyzer tool3 is used internally to discover class
dependencies and Directed Acyclic Graph (DAG) layers. The Classycle tool discovers strong
dependencies between classes and packages, and creates a Strongly Connected Components
(SCC) graph applying Tarjan’s algorithm. Next, according to SCCs calls, the graph is
condensated to an acyclic digraph of SCCs, from which the layers are extracted.

The Chidamber and Kemerer Java Metrics: These metrics are calculated with the help of the
CKIM tool45:

o WMC: Weighted Methods per Class.
o DIT: Depth of Inheritance Tree.
o NOC: Number of Children.

o
O

BO: Coupling between object classes.

o REC: Response for a Class.

o LCOM: Lack of cohesion in methods.
o Ca: Afferent couplings.

o NPM: Number of Public Methods.

R (reusability index): It is an estimation of the reusability of a class based on the Chidamber-
Kemerer metrics. The larger this value the more reusable a class is. It can take values between 3
to -20 (approximately).

Pattern: The design pattern to which a specific class is involved (if any).

Cluster Size: The number of classes the specific class needs in order to form an autonomous,
fully functional component. This is the cardinality of the dependencies' set of a class, which
includes the class's dependencies, the dependencies of these dependencies and so on.

To perform static analysis for a Reuse Project in COPE:
1. Select “Static Analysis” from the Analysis menu.

2. In the dialog that appears (entitled “Static Analysis”) click to the Start button.

3 http://classycle.sourceforge.net/

4 http:/www.spinellis.gr/sw/ckjm/

5 A more detailed analysis on the Chidamber and Kemerer Java Metrics can be found here

OPEN-SME Project

http://opensme.eu

http://classycle.sourceforge.net/
http://www.spinellis.gr/sw/ckjm/
http://www.spinellis.gr/sw/ckjm/doc/metric.html

COPE User Guide Page 15 of 65

Marme v Search
Fuzzy Search

v JMoney | Please perform static analysis to view the metrics
P net

Static Analysis

Detecting dependencies. Please wait...
Dependencies detection DOMNE.

Irmporting dependencies in database. Please w
Dependencies stored DOMNE,

Detecting and storing CK metrics in datbase.

il) 3

N

Figure 5- COPE performing Static Analysis
3. When the analysis is complete (the progress bar has reached 100%) you can close the “Static
Analysis” dialog using the close button of the dialog.

After the static analysis has ended, COPE’s main window contains a series of metrics and information
produced by the static analysis.

CASE STUDY: Performing Static Analysis to the JMoney Reuse Project produces the following results

Name v = Search
Fuzzy Search
¥ jwoney Class Name [Type ||Size DITJ|N... JIC... JR...] _HN_HR | Pattern
v net net.sfjmoney.guiNavigationTreeCellRen... |class 1597| 1 4 9 3 2l 6 0 4 9 1| 1 2| -8,09MNo involvernent in pat. -
v sf net.sfjmoney.SortedTreeModel class 1047, 6| 1 3| 1 3] 2 2 1 7 3| 8 3[-2,723|No involvernent in pat...
¥ jmoney net.sFjmoney.gui SelectionComboBox class 1706 3 0) 7| [1] 7 S5 2 a 15 1 3 7|-0,652|MNo involvernent in pat...

P resources net.skjmoney.gui.PreferencesDialog class 7320, 5i 8| 28| 9 7l 6 0 8| 59| 0f 5] 2[-10,32|No involvernent in pat...
Start.java net.sf.jrmoney.gui.CategoryComboBox class 835 3| 3 4 4 2 6 1] 3 7 1 4 2|-7,155No involvernent in pat...
sortedTree fl|net.sfjmeney.gui AccountChooser class 4809 El 7| 31 3 8 6 1] 7| 44 o 9 4|-9,662|No involvement in pat...
SortedTree Jogt sfimoney.model. CategoryNode class 735 13 2| 4 1 3 3 [1] 2 6 313 3|-5,041|No involvernent in pat...

> qui netsﬁ!mone' .guyStatusComboBox class 587) 1 1 3 0 1 5 [il 1 4 o 1 1[-4,629No }nvolvement !n pat...

» images net‘sﬁj_mone' .gquiAccountBalancesRepor...|class 9012 6| 10} 45 6 15 5 o 15| 78 59 6| 3 -11,...No involvernent in pat...

net.sf.jmoney.gui.AboutDialog class 4812 El E 35 1 3 6 [il 3| 44 o 3 2|-7,704|No involvernent in pat...
Constants.| # 0t <F jmoney.quiEntryFilterPanel class 4419 5 9| 20 4 12 5 o 9 s 8| 5| 4[-9,628Noinvolvernent in pat...
Verysimplelt Wnet sFjmoney.gul.MainFrame class 22251 o8 33 &3 s| 48] 6| o 35[229) st 28 4[-13,.Noinvolvementin pat...
UserProperfffinet.sfjmoney.io. QIF class 15897 4 19] 30 9 24 1 0 19124 252 3 4[-10,...]No involvernent in pat...

» model net.sfjmoney.model. Account class 8351 26| 7| 20| EIE 0 7| 75| 522 26] 37|-6,132|No involvement in pat.
Currency.jaffnet.sfjmoney.model.RootCategory class 626 4] 2| 2| 3| 2] 2 0 2| 4 1] 4 2|-4,958|No involvernent in pat...
NavigationTj fnet.sf.jmoney.quiEntryListlcemLabelsExt... |class 2522 4 5 12 2 3 6 of 5 18 ol 4 1[-8,912|No involvement in pat.
EntryFilter net.skjmoney.model. AbstractCategory abstrack... 1263] 7| 2| 4 2) 7l 1 4 2l 11 15 7| 7|-2,922|No involvement in pat...

o net.sf.jmoney.model EntrylistModel class 941 [i 0 6 ol 3 3 o o 7 3| 0 2-0,916[Noinvolvement in pat...
EntryComp net.skjmoney.gui.EditableMetalTheme class 6866 1 1 15 2l 33 3 0 a1 63| 356] 1| 28]-1,792No involvemnent in pat... L

net.sFjmoney.model. Session class 3488 12| 4 10| 5| 14 1 of W4l 32[33[12[13]-5355No involverentin pat...
net.sf.jmoney.gui.EntryListitemlabels class 5448 10 6 20 1 9 5 1 6] 38 16| 10| 4[-8,028|No involvernent in pat...
net.sfjmoney.model. DoubleEntn, class 2888 7| El 5 2l 12 2 [1] 3 26 36| 7| 11]-4,975No involvernent in pat...
net.sfjmoney.model. Categor, interface 317] 15 1 4 1 3 1 [il 1 3 3[15 3[-2,529|No involvernent in pat...
net.sfjmoney.guiAccountOverviewPanel |class 2409 1] 0j 16 i 2l 5 [1] a 17 o o 1|-2,152|No involvernent in pat...
net.sf.jmoney.NavigationTreeModel class 2190) 2 3 7 2 7l 3 0 3 15 11 2 7|-5,686/MNo involvement in pat...
net.sfjmoney.gui.EncryListitem class 5203 El El 20 3 9 5 1 3 35 12| 3| 6|-5,916|No involvernent in pat...| 1
net.sf.jmoney.Constants interface 3976 33| 0| El 0| 1 1 1] 0 8 0| 32 0]-1,027|No involvement in pat...
net.sf.jmoney.guilncomeExpenseReport... |class 12128 8| 15] 48 6 18 5 0 20| 98 99| 8 3[-12,...No involvernent in pat...| 1
net.sfjmoney.model.CategoryTreeModel |class 2144] 7 6 7 4 9 3 0 6 19 4 7 8|-7,865No involvemnent in pat...[A
net.sfjmoney.model.SimpleCategory class 1505 4 2| 4 3 5 2 il 2| 14 o 4 5|-4,925|No involvernent in pat...
net.sFjmoney.io.MT940 class 8270 3 El 24 El 71 1] 8| 59| 15[2| 4]-8,476[MNo involvemnent in pat...| 4
net.sfjmoney. Currency class 4780 6| 1 22 1 15 1 a 0| 45 75(6| 11| 0,828/No involvemnent in p. -
— e = e ————————

‘E The OPEN-SME Consortium

Figure 6- COPE’s main window after a successful static analysis

OPEN-SME Project http://opensme.eu

COPE User Guide Page 16 of 65

In the red area COPE provides file structure of the source code for the JMoney project (with nodes
representing the packages and leaves representing the classes).

The green area is presenting the aforementioned data provided by the static analysis.

1.3.5.2 PERFORMING SOURCE FILE INDEXING

Source File Indexing is another analyser that creates an index from the source files of a Reuse Project.
This index enables the feature of the internal search engine we mentioned in the beginning of section 2
and provides five different fields for targeted search:

o Full Text: performs search for the specified keywords to the whole class file
o Name: performs search for the specified keywords to the name of the class file
e Attribute: performs search for the specified keywords to the attributes of the class file
e Method: performs search for the specified keywords to the methods of the class file
o Comment: performs search for the specified keywords to the comments of the class file
To perform Source File Indexing for a Reuse Project in COPE:
1. Select “Source File Indexing...” from the Analysis menu.
2. Inthe dialog that appears (entitled “Source File Indexing”) click to the Start button.

3. When the analysis is complete (the progress bar has reached 100%) you can close the “Source File
Indexing” dialog using the “X” button.

Currency Ful_Text = & Search
Fuzzy Search
v JMoney | Class Marme Eme bize |UsedBy |Uses(l) |Uses(Ex) ||Layer |WMC |DIT [NOC |[CBO ||RFC |LCOM [Ca |[NPM |R | Pattern || Cluster Size |

v net net.sfjmoney. Cy Full_Text 780 |6 1 22 1 15 1 o o 45 |75 6 |11 0.82...|MNo involvernent in pattrns |2
v st net.sF jmoney. mdF N 351 [26 7 20 2 41 1 0 7 75 [522 26 |37 -6.1... [No involvernent in pattrns |3
¥ jmoney net.sf.jmoney.g 601 [16 18 29 6 13 3 0 18 82 [0 16 |3 -12.... [Ne involvernent in pattrns [17
» resource [net.sFjmoney.gy Method 320 |5 8 28 9 7 6 0 B 59 |0 5 |2 -10.... [No involvernent in pattrns |49
Start.javy |net.s! Jjmoney.Us| et 043 |6 0 6 0 15 1 0 0 24 0 6 15 0.31...|Ne involvernent in pattrns [1
SortedTi |net.sFjmoney.g 28 35 63 9 48 6 |0 35 [229 |s18 |28 |4 -13.... |[No involverment in pattrns 49
SortedT| |net.shimoney.model.... |class |735 |13 2 2 1 3 3 0 2 6 3 13 [3 -5.0... [Ne involvernent in pattrns |3

» qui net sfjmoney.gui.Stat... [class 587 |1 1 El 0 1 5 o 1 4 0 1 [-4.6... [No involvemnent in pattrns 1
» images net.sfjmoney.gui.Acc... |class (9012 |6 10 45 6 15 5) 0 ills) 78 59 3 3 -11.... [Ne involvernent in pattrns [18
net.sfjmoney.guiAbo... class (4812 |3 E 35 il 3 6 0 3 44 |0 3 |2 -7.7... |No involvernent in pattrns |2
ConsFan net.sfjmoney.gui.Entr... [class (4419 |5 9 20 4 12 5 0 9 41 8 5 4 -5.6... Mo involvernent in pattrns [12
VerySimg [net. sFjmoney.qui.Ma... |class |222... |28 35 63 9 48 6 0 35 229 (818 28 |4 -13.... [No involvernent in pattrns |49
UserProj |net.sF jmoney.io. QIF class [158.. |4 19 30 9 24 1 0 19 124 [252 3 |4 -10.... [No involverment in pattrns |49

» model | |net.sfjmoney.modelA...[class [8351 |26 7 20 2 41 1 0 7 75 [522 26 |37 -6.1... [No involvernent in pattrns |9
Currenc |net.sfjmoney.modelR...[class [626 |4 2 E 3 2 2 0 E B il 4 |2 -4.9... |No involvement in pattrns |6
Navigatic |net.sf.jmoney.guiEntr... |class |2522 |4 5 i 2 Bl 6 |0 5 18 |0 4 1 -8.9... [Mo involvernent in pattrns |4
EntryFile [net sF.jmoney.modelA...|abst... [1263 |7 2 2 2 7 1 4 2 11 |15 [-2.9... |No involvernent in pattrns |4

r o net.skjmoney .que‘.Eu. class 941 |0 0] 0 B 3 0 0 7 B 0 2 -0.9... [Ne involvernent in pattrns [1
EntryCol net.sfjmoney.quiEdit... |class |6866 [1 1 15 2 33 EN (] 1 63 |356 1|28 -1.7... |No involvernent in pattrns |3
net.sfjmoney.model.S...|class 3488 [12 4 10 5) 14 1 0 4 32 33 12 |13 -5.3... [Ne involvernent in pattrns [16
net.skjmoney.qui.Entr.. [class |5448 [10 6 20 i El 5 & 38 |16 10 |4 -8.0... [No involvernent in pattrns |3
net.sfjmoney.model.... |class [2888 |7 B 5 2 12 2 0 3 26 [36 7 11 -4.9... [No involvernent in pattrns |9
net.sfjmoney.model.... [inter..[317 [15 1 4 il 3 1 0 1 E 3 15 |3 -2.5... |No involvernent in pattrns |3
net.sfjmoney.guiAcc... |class (2409 |0 0 16 0 2 5 0 0 17 [0 0 |1 -2.1... [Ne involvernent in pattrns |1
net.sf.jrmoney.Navigati... |class 2190 |2 E 7 2 7 3 0 3 15 (11 2 |7 -5.6... [No involvernent in pattrns 4
net.sf.jmoney.guiEntr... |class |5203 |3 3 20 3 El 5 1 3 35 |12 3 |6 -5.9... |[No involverment in pattrns 11
net.sfjmoney.Consta... [inter...[3976 (33 0 9 [1] i 1 0 [1] 8 [1] 32 0 -1.0... [No involvernent in pattrns |1
net.sf.jmoney.guilnco... class |121... |8 15 48 6 18 5 0 20 ECRREE] 8 |3 -12.... [Ne involvement in pattrns [18
net.sfjmoney.model.... |class [2144 |7 6 7 4 El 3 0 6 19[4 [-7.8... [No involvernent in pattrns [10
net.sfjmoney.model.S...[class 1505 |4 2 4 3 5 2 0 2 14 |0 4 |5 -4.9... [No involvernent in pattrns |5
net.skjmoney.io.MT940 |class [8270 |3 9 24 9 7 1 0 & 59 |15 2 |4 -8.4... [No involvernent in pattrns |49

- |net sF.jmoney.Currency |class 4780 |6 1 22 il 45 1 0 o 45 |75 6 11 0.52...|No involvernent in pattrns |2

|
‘r The OPEN-SME Consortium

Figure 7- COPE performing Source File Indexing

CASE STUDY: Having performed Source File Indexing for JMoney Reuse Project we can now use the
internal search engine to find classes that match specific queries. For example a search for the term
“Currency” using the field of “Full text” will return (in the form of highlighted rows) six classes of the
JMoney Reuse Project (see Figure 8- Searching for classes using COPE’s internal search engine)

OPEN-SME Project http://opensme.eu

COPE User Guide Page 17 of 65

Currency Full Text | = u Search Reset SearchResults
Fuzzy Search
v JMoney | Class Name || Type |Size |UsedBy |Uses(l) |Uses(Ex) ||Layer |WMC |DIT [NOC |CBQ ||RFC |LCOM ([Ca |[NPM |R ||Pattern ||Cluster Size |
v net net.sf.jmoney.Currency |class (4780 |6 1 22 1 15 1 0 0 45 |75 6 |11 -|No involvernent in pattrns |2 -

v sf net.sfjmoney.model.A...|class [8351 |26 7 20 2 41 1 0 7 75 [522 26 |37 ... INo invelvernent in pattrns |9
¥ jmoney net.sfFjmoney.quiAcc... |class [9601 |16 18 29 6 13 5 0 18 82 |0 16 3 ... [Noinvolvernent in pattrns [17
* resource |net.sf.jmoney.gui.Pref...|class |7320 |5 8 28 9 7 6 0 8 59 0 5 2 . [No invelvernent in pattrns |49

Start jav. |net.sFjmoney.UserPro...|class [3043 |6 0 6 [1 15 1 0 0 24 |0 6 |15 .|No involvernent in pattrns |1
SortedT) [Det.sfjmoney.qui.Mai... |class |222... |28 35 63 9 48 6 0 B 229 |818 28 |4 o involvernent in patkrns |49
SortedTs |net.sfimoney. c 2 2 i B 3 o 2 6 B 13 |3 o involvernent in pattrns |3

> qui netsﬁ!mone'. . |cl 1 3 (1] 1 5 0 1 4 0 1 1 No!nvolvement !n pattrns |1
» images net sfjmoney. c 10 45 & 15 5 o 3 78 |59 6 |3 No involvernent in pattrns |18
net.sfjmoney. w @ 3 35 il B 6 0 B 44 0 3 2 Mo involvernent in pattrns 2
Constan [ner sfjmoney.quiEntr... [class |4419 |5 9 20 4 12 5 |o B TENE 5[4 ... |No involvernent in pattrns [12
Verysimf |net,sf jmoney.gui.Mai... |class |222... 28 35 63 B 48 |6 |o 35 |229 [g18 |28 |4 ... No invelvement in pattrns [45
UserProj |net.sF.jmoney.io. QIF class [158... |4 19 30 9 24 1 0 19 124 [252 3 |4 ... INo involvernent in pattrns (49

» model | |netsfjmoney.model.A. . [class [8351 |26 7 20 2 41 1 0 7 75 |522 26 |37 ... |No involvernent in pattrns |9
Currenc |net.sfjmoney.modelR...[class [626 |4 2 2 3 2 2 0 2 4 i 4 |2 ... [No involvernent in pattrns |6
Navigatic |net.sf.jmoney.guiEntr... |class [2522 |4 5 12 2 3 6 |0 5 18 |0 4 1 ... |No involvernent in pattrns |4
EntryFie net.sfjmoney.model.A...|abst... [1263 |7 2 2 2 7 1 4 2 11 [15 [... [No invelvernent in pattrns |4

o net.sfjrmoney .quet‘.E class 941 [0 0 6 [i 3 3 0 0 7 3 0o |2 ... |No involvernent in patkrns [1
EntryCo net.skjmoney.gui.Edit... [class 6866 [1 1 15 2 33 3 0 [i 63 356 1 28 o invelvernent in pattrns |3
net.sfjmoney.modelS...|class 3488 [12 4 10 3 14 1 0 4 32 [33 12 |13 o involvernent in patkrns [16
net.sfjmoney.gui.Entr... |class |5448 |10 3 20 il 9 5) 1 6 38 16 10 |4 o invelvernent in pattrns |3
net.sfjmoney.model.... |class [2888 |7 E 5 2 12 2 0 3 26 [36 71 o involvement in pattrns |2
net.sfjmoney.model.... finter...317 15 1 4 1 3 1 0 1 B 3 15 [3 ... [No invelvernent in pattrns |3
net.sfjmoney.guiAcc... |class (2409 |0 0 16 [1] 2 5 0 [1] 17 [0 o i ... INo involvement in pattrns [1
net.sfjmoney.MNavigati... |class 2190 |2 3 7 2 7 3 0 3 15 |11 2 |7 Mo involvernent in pattrns 4
net.sfjmoney.gui.Entr. . 3 3 20 3 El 5 1 3 35 [12 3 6 Mo involvernent in pattrns |11

net.sf.jmoney. Const i £ 33 0 9 a i 1 0 [1] 8 0 32 0 Mo invelvernent in pattrns |1
net.sfjmoney.guiinco... |class [121... |8 15 48 6 18 5 0 20 98 [99 ERE] ... INo involvernent in pattrns [18
net.sfjmoney.model.... |class 2144 |7 6 7 4 El 3 0 6 19 |4 7 |8 ... |No involvernent in patkrns |10
net.sfjmoney.model.5... [class [1505 |4 2 4 3 5 2 0 2 14 [0 4 |5 ... [No involvernent in pattrns |5
net.sfjmoney.io.MT940 |class |8270 |3 El 24 9 7 1 0 8 59 [15 2 |4 ... |No involvernent in patkrns (49

— X net‘sf mone'.Curr‘e‘nE‘ (‘Lass 4780 |6 1 22 i 15 1 0 0 45 |75 6 111 No!nvo!vement !n pattrns |2 .

‘EJ The OPEN-SME Consortium

Figure 8- Searching for classes using COPE’s internal search engine

1.3.5.3 PERFORMING DOCUMENTATION GENERATION

Documentation Generation creates the Javadoc documentation for the source code of the Reuse Project.
To perform Documentation Generation for a Reuse Project in COPE:

1. Select “Documentation Generation...” from the Analysis menu.

2. Inthe dialog that appears click to the Start button.

3. When the generation is complete (the progress bar has reached 100%) you can close the process
dialog using the “X” button.

CASE STUDY: After the Documentation Generation process is finished the Reuse Engineer is able to
see the documentation for a class of the Reuse Project by selecting this class from the tree view located
in the left of COPE’s main window (see Figure 6- COPE’s main window after a successful static
analysis).

Let’s say, for example, that in the JMoney Reuse Project, we would like to see the documentation of the
class Account. Selecting it with the aforementioned way would provide us with the following dialog:

OPEN-SME Project http://opensme.eu

COPE User Guide Page 18 of 65

Documentation For file file://fhome/krap/JMoney/doc/net/sf/jmoney/model/Account.html

Overview Package Tree Deprecated Index Help
FRAMES HNO FRAMES
PREV CLASS HNEXT CLASS A" ClaSSeE
SUMMARY: NESTED | FIELD | COMSTR | METHOD DETAIL: FIELD | COMSTR | METHOD

net.sFjmoney.model

Class Account N
java.lang.0Object
L net.sf.jmoney.model.Account

All Implemented Interfaces:
java.io.5eralizable, java.lang. Cornparable, Constants, Category

public class Accountextends java.lang.Objectimplements Category, java.io.Serializable

winterfaces winterfaces .
- «interfaces
Serializahle Constants Cateqo
(java.io) (net.sf.jmoney) gory
R

™ A

Account

The data model for an account,

Figure 9-Documentation for the class Account of the JMoney Reuse Project

NOTE THAT: besides the standard javadoc, uml diagrams are also included. COPE internally uses the
apiviz doclet® which provides the generated documentation.
1.3.5.4 PERFORMING DYNAMIC ANALYSIS

Dynamic Analysis, gives the opportunity to the Reuse Engineer to test and validate the components he
extracts from COPE’s Reuse Projects. More specifically, Dynamic Analysis can provide the following

information:
e Statement Coverage of the Component
e Statement Coverage per Method of the Component
e Linear Code Sequence and Jump (LCSAJ) coverage of the Component
e LCSAJ Coverage per Method of the Component

e Control Flow Graph per Method of the Component

6 http://code.google.com/plapiviz/

OPEN-SME Project http://opensme.eu

http://code.google.com/p/apiviz/

COPE User Guide Page 19 of 65

e Automatic Functional Test Generation
NOTE THAT:

e In order for the Dynamic Analysis to be performed at least one component should have been
generated using one of the available Component Makers (see 1.3.7).

e For the needs of this section we are going to introduce and work with the Account component
extracted from the JMoney Reuse Project. If you want to know more about the Component
Making Process please see Section 1.3.7).

To perform Dynamic Analysis for a Reuse Project in COPE:

1. Select “Dynamic Analysis” from the Analysis menu.

Component Selection

rAvailable Components
Account Selected Component Depends on:

Select Component

rExecution Scenario File Selection
Choose

Description is JUnit

Figure 10- COPE’s Dynamic Analysis: Component Selection Tab

2. Inthe first tab (Component Selection)

a. Select the component to perform dynamic analysis and click to the “Select Component”
button. The available components extracted so far from the open project will be visible
in the ‘Available Components’ list.

b. If the selected component depends on other components, select those components using
the arrow buttons provided to the upper right area of the dialog.

c. Define the execution scenario for the component to be tested. An execution scenario
consists of a fully functional class that uses the main functionality of a specific
component.

NOTICE THAT: Many different execution scenarios can be developed and provided here for the same
component.

CASE STUDY: For the Account component of the JMoney Reuse project a possible execution scenario
could be the following:

OPEN-SME Project http://opensme.eu

COPE User Guide Page 20 of 65

public class JMoneyAccountExample {
public static void main(String[] args) {

Account account = new Account();
account.setMinBalance (0L) ;
account.setAccountNumber ("100000GKB") ;
account.setCurrencyCode ("EUR") ;
account.setName ("Joan Doe");
account.setBank ("GKBank") ;
account.setComment ("An artificial account");
//add some entries in the account
Entry entryl = new Entry();
entryl.setAmount (2000) ;
entryl.setDescription("Salary deposit");
entryl.setDate (new Date())

account.addEntry (entryl) ;

Entry entry2 = new Entry();
entry2.setAmount (-30) ;

entry2.setDescription ("Withdrawal of 30 euros");
entry2.setDate (new Date());

account.addEntry (entry?2) ;

Vector v =account.getEntries();
Iterator 1 = v.iterator();
while (i.hasNext ()) {

Entry e = (Entry) i.next();
System.out.println (
"Entry date:" + e.getDate() + " Entry amount: " +
e.getAmount () + " <"+e.getDescription() + ">");

}

In this case, the execution scenario is a class (JAccountExample) which exercises the main functionality
of the Account class in its main method.

d. Click the “Choose” button and browse to the class representing the execution scenario (e.g.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 21 of 65

for the Account Component, JAccountExample.java)

¥ Een B 3 = «) 1:34MNM 2 Apostolos Kritikes it

Select Execution Scenario File

Component Selection

rAvailable Component:
Selected Component Depends on:

Select Execution Scenario File

New Folder RenameFile

/horne/krap/JMoney/generated/Account/sre/net/sF... | =

Folders Files
/ “| |Constants.java
Currency.java

model/ IMoneyAccountExample|

SortedTreeNode java

Select Component | |Account

rExecution Scenario File Selection

Selection:
| JMoneyAccountExample.java | Choose
Description Filcer: is Junit
(AVAFle =N

@ Cancel ‘ o7 SK

Figure 11- Selecting an execution scenario

e. |If the execution scenario class is a JUnit test, check the checkbox “is Junit”.

f. Provide a description for the selected component in the “Description” text area. This
documentation, if provided, will be included in the HTML generated documentation for the
component tests (see Section Performing Dynamic Analysis).

3. Inthe second tab (Coverage)

Component Selection | Coverage | validation

rLcsaj Coverag

ethod Lcsaj Cowv. (%) |[Stmt Cov. (%)

Lcsaj Cov.: Statement Cov.: Compute Coverage

Figure 12- Dynamic Analysis: Coverage Tab

OPEN-SME Project http://opensme.eu

COPE User Guide Page 22 of 65

a. Click to the “Compute Coverage” button.

Coverage ¥ Een B 3 = «) 1:39NM 2 Apostolos Kritikes it
Component Selection | Coverage | Validation Htrnl Report
rLcsaj Coverag
| Method ||Lesaj Cov. (%) |SemECov. (%) |
net.sf.jmoney.SortedTreeNode.SortedTreeNode() 1] 0
net.sfjmoney.SortedTreeNode.SortedTreeNode(Object) 100] 100)
net.sf.jmoney.SortedTreeMNode.compareTo(Object) : int il 0
net.sfjmoney.SortedTreeNode.insert(MutableTreeNode, int) : void [1] i
net.sf.jmoney.SortedTreeMNode.sortChildren() : void il 0
net.sf.jmoney.model. Account.getDefaultCurrencyCode() : String [1] i
net.sf.jmoney.model. Account.setDefault CurrencyCode(String) : void [il 0
net.sf.jmoney.model. Account.Account() 100| 100
net.sf jmoney.model. Account.Account(String) 0 0
net.sf.jmoney.model. Account.getName() : String [1] i
net.sf jmoney.model Account.getCurrencyCode() : String 0
net.sf.jmoney.model. Account.getCurrency() : net.sf.jmoney. Curr SYSISE 0
net.sf jmoney.model Account.getBank() : String — 0
net.sf.jmoney.model Account.getAccountNumber() : String 6 Coverage Process Finished Successfully! 0
net.sfjmoney.model Account.getStartBalance() : long i
net.sf.jmoney.model. Account.getMinBalance(): Long 0
net.sfjmoney.model. Account.getAbbrevation() : String & OK i
net.sf.jmoney.model. Account.getComment() : String - [i]
net.sf.jmoney.model. Account.getEntries() : Vector 100 100
net.sf.jmoney.model. Account.addEntry(Entry) : void 100| 100
net.sf.jmoney.model. Account.removeEntry(Entry) : void [1] i
net.sf jmoney.model. Account.cleanupEntry(Entry) : void 0 0
net.sf.jmoney.model. Account.initEntry(Entry) : void [1] i
net.sf jmoney.model. Account.replaceEntry(Entry, Entry) : void 0 0
net.sf.jmoney.model. Account.parseAmount(String) : long [1] Q
net.sf jmoney.model Account.FormatAmount(long) : String 0 0
net.sf.jmoney.model. Account.setName(5tring) : void 66 75
net.sf jmoney.model. Account.setEntries(Vector) : void i 0
net.sf.jmoney.model. Account.setCurrencyCode(String) : void 66 75
net.sfjmoney.model. Account.setBank(String) : void 66 75
net sFimnneyv madel Arcannt setdecnnnthlimber(Strinal - unid AR IS
| Details | Lesaj Cova: 12.0% Statement Cov.: 11.0% Compute Coverage

Figure 13 — Coverage results

After the coverage computation has finished, the estimated LCSAJ and Statement coverage metrics
appear in red in the bottom of the coverage results dialog (see Figure 13 — Coverage results).

Moreover by selecting a specific method from the table in the centre of the dialog and clicking to the
“Details” button, the Reuse Engineer is prompted with a new dialog which presents new coverage
information, specifically for the selected method.

As you can see in “Figure 14 — Coverage information for Account’s setName method” this window
provides not only the LCSAJ and statement coverage metrics for the selected method but also it
visualizes the paths that were covered by the execution scenario we provided (text highlighted in green).

The same dialog provides the option of displaying the Control Flow Graph for a specific method. By
clicking the “Display Control Flow Graph” button, the control flow graph opens in a new dialog (see
Figure 15 — Control Flow Graph for Account’s setName method)

NOTE THAT: Control Flow Graph contains an extra statement “System.currentTimeMillis() . This
statement is placed automatically to support the tracing procedure (using Aspect]) and should be
ignored.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 23 of 65

Methods Source Code

net.sF.jmoney.model.Account.setName(String) : void
-rUncovered Paths

1 public void setMame(String aName) {
JJpath_1
2 if (name != null && name.equals(aMame)) {
3 return;
4 ¥
5 name = aMame;
6 changeSupport. firePropertyChange (“name”, null, name);
7 oY Uncovered Tokal: 1
rCovered Paths
JJpath_o
JJpath 2
rCoverage
Lcsaj: 66.0 %
Stmt: 75.0%
Display Control Flow Graph & Show Execution Scenario Covered Lines

Figure 14 — Coverage information for Account’s setName method

Control Flow Graph Viewer
-Control Flow Graph

==
22

g

Figure 15 — Control Flow Graph for Account’s setName method

4. In the third tab (Validation) a five step process (given in the form of tabs) guides the Reuse
Engineer through the validation phase.

a. Step 1. Class. The candidate classes include those that implement a provided interface

OPEN-SME Project http://opensme.eu

COPE User Guide Page 24 of 65

of the component or the class from which the component was extracted.

Component Selection | Coverage | Validation HtrmlReport

rHow It Works:

1.Class

4. Tests

Select the Class Under Test. The canditate classes include those that
c ncil irplement a provided interface of the component orthe class from
5. Aspect] ’

which the component was extracted.

2. Interfaces
Select Incuded Exclude Interfaces. In that tab alist of provided and
required interfaces is given. The provided intrefaces of the extracted
component should be added to the included interfaces list whereas
the requiredinterfaces of the component should be added to the
excludedlist. In the excluded interfaces list if the required interfaces
are provided through components that have been addedin the
"Component Depends on" list then it is not required to include them.
Finally the reuse engineer may add additional interface at his/hers
discretion.

3. Scope
Select Include Exclude Scope. This defines the scope of the validation
process. The reuse engineer may select from the most general packge
(asitis recornmended), up to a specific class.

P

rClass under Test

/homefkrap/JMoney/generated/Account/src/net/sf/imoney/SortedTreeNode. java v

Next -

Figure 16 — Validation: Class tab

b. Step 2: Interfaces. Select Included / Exclude Interfaces. In that tab a list of provided and
required interfaces is given. The provided interfaces of the extracted component should
be added to the included interfaces list whereas the required interfaces of the component
should be added to the excluded list. In the excluded interfaces list if the required
interfaces are provided through components that have been added in the “Component
Depends on” list then it is not required to include them. Finally the reuse engineer may
add additional interface at his/hers discretion.

Component Selection | Coverage | Validation Hernl Report
el rinterfac
2. Interfac:
e Included
3.5cope net.sf.jmoney.model.lAccount
4, Tests
5. Aspectd
-
-
Excluded
->
-
Add Another

<-Previous | | Next -»

Figure 17 - Validation: Interfaces tab

OPEN-SME Project http://opensme.eu

COPE User Guide Page 25 of 65

c. Step 3: Scope. Select Include Exclude Scope. This defines the scope of the validation
process. The reuse engineer may select from the most general package (as it is
recommended), up to a specific class.

Component Selection | Coverage | Validation Heml Report
1. Class Scop
Zincee net.sf.jmoney. model = | rincluded
3.5cope net.sfjmoney
<
4 Tests
5. Aspect]
Excluded
->
<
Add another --» Add

<-Previous | | Next ->

Figure 18 - Validation: Scope tab

d. Tests. Select Test Generation Properties. In this tab the reuse engineer must define the
input and output interfaces. Input interfaces are those that are provided by the
component and are going to be tested based on the execution scenario. In the same
manner, Output interfaces are those that are required by the component and are going to
be tested based on the execution scenario. Required interfaces should be implemented to
include them in Output list.

Component Selection | Coverage | Validation Html Report

el rTest Generation Properti

2. Interfaces Provided Interfaces Input Interfaces
3.Scope net.sf.jmoney.model.lAccount
4 Tests
5. Aspectd
->
o
Required Interfaces Qutput Interfaces

<-Previous | | Next ->

Figure 19 - Validation: Tests tab

OPEN-SME Project http://opensme.eu

COPE User Guide Page 26 of 65

e. AspectJ. Aspect Oriented Programming [2] is used to trace component's behaviour as it
is executed. An Aspect)’ file is generated according to the fields of 1, 2 and 3 tabs.
Reuse Engineer may make any change in the displayed code and save the changes.

Component Selection | Coverage | Validation Html Report
1.6 | agpect] Fil
2. Interfaces PIIVELS VOO USCC A T A S @ T O JTatIeT s ST ST _
System.out.println(ch +i+" " +jp.toLongString();
3.5cope
4 Tests Bufferedwriter stream = setupStream();
try {
5. Aspect strearn.write(ch +i+" -» " +((CodeSignature)jp. getSignature()). getMame()+" -= " + jp.getSourceLocation().getLine() + BR);

stream.flush();
}catch (IOException g){
}
'

private void afterListCallTrace(JoinPoint.SkaticPart jp, String ch){

Bufferedwriter stream = setupStrearm();
try{
Field myPrivateField = field;
myPrivateField setAccessible(true);
Object result = myPrivateField gek(object);
stream.write(ch +i+" -» " +((CodeSignature)jp.getSignature()). getName(+" -»" +Jp.getSourcelocation().getLine()+ " -»
stream.flush();
}catch (I0Exception &) {
} catch (lllegalArgumentException €) {
}catch (llegalAccessException &) {

I3 =

b

Save Changes | Revert | Create AspectJFile |

|<-Previous | | Perform Validation Process

Figure 20 - Validation: AspectJ tab

f. Once the Aspect] file has been generated the Reuse Engineer can proceed in performing
validation process by clicking to “Perform Validation Process” button. If no errors occur
a success message is prompted after a while.

Validation ¥ Een B 3 = o) 1:52MNM 2 Apostolos Kritikes it

Component Selection | Coverage | Validation | Prom MXMLFile | Mappings | ModelJUnit File | Heml Report

1.Class

rAspect] Fil
2 Interrie P IVELS VUL USCC a0 T A S [I O JLEUICE 8t SOy T =
Systern.out.princln(ch+i+" " +jp.toLongString());
3. 5cope
4 Tasts BuFFeredV!riterstr{eam: setupStreamd);
try
5. Aspect) stream.write(ch +i+" -> " +((CodeSignature)jp. getSignature()). getName(+" -= " +jp.getSourcelocation().getLine() + BR);
stream.Flush();
}catch (IOException e) {
}
i
private void afterListCallTrace(Join e validation
Bufferedwriter stre| =
try{ 6 Validation Process Finished Successfully!
Field myPrivateField
myPrivateField. serAd
Object result = myPr| |¢/ OKl
strea —F Ire()).getMame(}+" -=" +jp.getSourcelocation().getLine() + " ->
stream.flush();
} catch (IOException g) {
}eateh (llegalArgurmentException &) {
}catch (llegalAccessException €) {
'
} -
“ v
Save Changes | | Revert Create AspectJFile

| s-Previous | | Perform Validation Process

7 http:/Avww.eclipse.org/aspectj/

OPEN-SME Project http://opensme.eu

http://www.eclipse.org/aspectj/

COPE User Guide Page 27 of 65

Figure 21 — Validation process successfully completed

NOTE THAT: Nodes entitled "System.currentTimeMillis()_" serve tracing needs for the AspectJ part of
the validation. The Reuse Engineer may simply ignore them.

5. In the fourth tab (ProM MXML File)

This tab displays an automatically generated XML file after validation process completed successfully.
This XML file represents a Finite State Machine (FSM) automaton. The Reuse Engineer can choose to
visualize MXML by clicking to the “Visualize MXML” button to the bottom left corner of the tab. By
doing so, the aforementioned FSM is being transformed from its XML version to a user friendlier, graph
like version (which is available in a newly created tab named “FSM Visualization”).

Component Selection | Coverage | Validation | ProM MXMLFile | Mappings | ModelJUnit File | Herml Report
Path: /home/krap/JMoney/generated/Account/tmp/extracted/PromTrace xml
<Artribute narme="amount?g">-30<fAttribute>
</Data>
<Timestamp>2011-12-23T01:52:28.601</Timestamp>
<fAuditTrailEntry=
<AuditTrailEntry>
<WorkFlowModelElement>setDescription</WorkFlowhModelElement>
<EventType=complete</EventType:>
<Data=
<Attribute name="description?g">withdrawal of 30 euros</Attribute=
</Data>
<Timestamp=2011-12-23T01:52:28.601</Timestamp:
<fAuditTrailEntry=
<AuditTraillEntry=
<WorkFowModelElemnent=setDate</WorkfowiModelElement
<EventType=complete</EventType:
<Data>
<Attribute name="date?q">FriDec 23 01:52:28 EET 2011</Attribute>
</Data>
<Timestamp>2011-12-23T01:52:28,602</Timestamp:
</AuditTraillEntry>
<AuditTrailEntry>
<WorkflowModelElement=addEntry</wWorkflowModelElement:
<EventType=complete</Event Type>
<Data>

<Attribute name="entries?g">[net.sf.jmoney.model.Entry@721cdeff, net.sf jmoney.maodel Entry@5sFe04cbf]</Attribute>
</Data>
<Timestamp>2011-12-23T01:52:28.602</Timastamp>
</AuditTrailEntry=
</Processinstance>
</Process>
</WorkflowlLog>

Visualize Nﬁ»ﬂL

Figure 22 — ProM MXML file tab

6. In the fifth tab (Mappings)

Maps the states of the FSM automaton produced in the previous step with methods of the selected
component and presents them in a tabulated form.

OPEN-SME Project

http://opensme.eu

COPE User Guide Page 28 of 65

Dynamic Analysis

Component Selection| Coverage | Validation | ProiM MxML File| Mappings | FSM Visualization | ModelJUnit File | Heml Report
State Mappings|| Variable Mappings
| ||[State ||Function J
| getDate net.sfjmoney.model.Entry.getDate()
| ||setName net.sfjmoney.model. Account.setName(java.lang. String)
setAmount net.sfjmoney.model.Entry.setAmount(long)
setCormment net.sfjmoney.model.Account.setComment(java.lang. String)
setBank net.sfjmoney.model.Account.setBank(java.lang.5tring)
setAccountNumber net.sfjmoney.model.Account.setAccountMNumber(java.lang. Stri...
| setDescription net.sfjmoney.model.Entry.setDescription(java.lang. Skring)
| setDate net.sfjmoney.model. Entry.setDate(java. util. Date)
addEntry net.sf jmoney.model.Account. addEntry(net.sf.jmoney.model.En...
‘ getEntries net.sfjmoney.model.Account.getEntries()
Entry net.sfjmoney.model.Entry. Entry()()
| |[setCurrencyCode net.sfjmoney.model.Account.setCurrencyCode(java.lang. String)
| ||setMinBalance net.sfjmoney.model.Account. setMinBalance(java.lang.Long)
| getDescription net.sfjmoney.model. Entry. getDescription()
| |lgetAmount net.sfjmoney.model.Entry.getAmount()

Figure 23 — Dynamic Analysis: State Mappings

NOTE THAT: Special characters (in the Variable Mappings section) stand for:
e ?g - The specific variable is global, therefore it affects component’s behaviour

e 70,71, ?2,...,?N — Applies to the first, second, ..., Nth parameter

OPEN-SME Project http://opensme.eu

COPE User Guide

Page 29 of 65

Dynamic Analysis

Component Selection| Coverage | Validation | Proi MxML File| Mappings | FSM Visualization | ModelJUnit File | Heml Report

State Mappings| |Variable Mappings
|Variable

||Marme

name?g net.sfjmoney.model.Account.name

bank?g net.sfjmoney.model. Account.bank
accountNumber?g net.sfjmoney.model.Account. accountNumber
amount?g net.sfjmoney.model.Entry.amount
minBalance?g net.sfjmoney.model.Account.minBalance
entries?g net.sfjmoney.model.Account.entries
comment?g net.sfjmoney.model.Account. comment
currencyCode?g net.sfjmoney.model. Account.currencyCode
date?g net.sfjmoney.model.Entry.date

description?g

net.sfjmoney.model.Entry.description

Figure 24 — Dynamic Analysis: Variable Mappings

7. In the sixth tab (FSM Visualization)

In this tab the Reuse Engineer can view the contents of the ProM MXML File in a user friendlier
version (a graph). Since the resulting FSM can be complex, the tab offers zoom in and zoom out
capabilities in order to make it easier for the Reuse Engineer to focus on specific parts of the automaton

(if needed).

OPEN-SME Project

http://opensme.eu

COPE User Guide Page 30 of 65

®

e B
a
C WsetMinBatancel
! e
ebtc mels

Figure 25 — Dynamic Analysis: Visualize FSM tab

8. In the seventh tab (ModelJUnitFile)

This tab uses an external tool, ModelJUnit, to automatically generate functional tests for the selected
component. By clicking “Generate Functional Tests” for the first time, the Reuse Engineer is prompted
with a dialog that contains detailed guidelines on how to download and use the ModelJUnit external
tool.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 31 of 65

Locate ModelJUnit Library

To generate Functional Tests using your IDE:
1) Insert "test.java" file, locatedin tests/[executionScenarioMarne]
Folder, inyour IDE's project
2) Add modeljunit.jar, junit.jar and easymock.jar libraries to your
classpath
3) Run "test.java"

To generate Functional Tests using Cope:
1) Locate ModelJUnit (v2.0 beta1) library below.
2) Click Ok.

*ModelJUnit Library can be acquired from here:
http:/fwanw. cs.waik ato.ac.nz/~marku/mbt/modeljunit/|

ModelJUnit Library Path:

| Browse |

| Ok |
Figure 26 — Guidelines to use ModelJUnit as an external tool

NOTE THAT: After the ModelJUnit code is created, some methods must be implemented manually by
the Reuse Engineer in order for the Functional test to be correct. More specifically, in the generated code
the Reuse Engineer should find the following line and implement the methods (which are grouped) after

that line:

ModelIUnit File | Heml Report

Figure 27 — Dynamic Analysis: ModelJUnit generated code

OPEN-SME Project http://opensme.eu

COPE User Guide Page 32 of 65

9. In the eighth tab (HTML Report)

Reuse engineer has the option of generating an HTML report with all the information provided by the
Dynamic Analysis Process.

When this option is first visited, all available options are automatically selected to be generated. The
Reuse Engineer however maintains the option of customizing the report depending on its needs.

CASE STUDY: In the following image, the Reuse Engineer has selected to generate a report containing
coverage information for all the available classes of the JMoney Reuse Project.

Component Selection | Coverage | Validation | ProM MXML File | Mappings | ModelJUnit File | HtmlReport

Coverage Options to Include in the Report; rMethods Selection for Coverage Report:

® Include Coverage Information P me s & selectall |Select

&

1. Execution Scenario Covered Lines

@

2. Covered Lcsaj Paths (JJ-Paths)

@

3. Uncovered Lcsaj Paths (JJ-Paths)

& 4. Control Flow Graph

Selected Methods de-selectall |Deselect

net.sf.jmoney. SortedTreeMNode.SortedTreeNode()

_ - net.sf.jmoney. SortedTreeMode. SortedTreeMode(Object)

& Include Validation Information net.sf.jmoney. SortedTreeNode.compareTo(Object) 1 int
net.sf.jmoney. SortedTreeMNode.insert(MutableTreeNode, int) : void
net.sfjmoney. SortedTreeNode.sortChildren(i
net.sf.jmoney.model. Account.getDefault CurrencyCode() : String
net.sf.jmoney.model Account.setDefaultCurrencyCode(String) : void
net.sfjmoney. model. Account.Account()

3, State Mappings net.sf.jmoney. model. Account.Account(String)

net.sf.jmoney.model Account.getMarme() : String

net.sfjmoney.model. Account.getCurrencyCode() : String
net.sfimonev.madel Accaunt.aetCurrency(): net.sfimonev. Currency

Validation Options to Include in the Report

1. ProM XML file (FSM)

2. Variable Mapping

5. Model For ModelJunit

Generate H&mlReport

Figure 28 — Customized Dynamic Analysis HTML report
The generated report is located in the “tests” of the generated component under a directory entitled
“doc”. It presents the aforementioned information as a set of HTML pages.

CASE STUDY: In the following images, you can see the Dynamic Analysis HTML report generated
using the options of “Figure 28 — Customized Dynamic Analysis HTML report”

OPEN-SME Project http://opensme.eu

COPE User Guide Page 33 of 65

Home Component Name: Account

Component Description
Extracted from: JMoney

Execution Scenario: "JMoneyAccountExample™

Coverage Execution Scenario Description:

Coverage Report) i)
JMoney Account class is a model for accounts with entries. Entries can be regular, double or split.
Account originates from the JMoney project (http://sourceforge.net/projects/imoney/)

Validation

Validation Report

Figure 29 — Dynamic Analysis HTML Report: Component Description

Home Component Name: Account

Component Description . . " "
Execution Scenario: "JMoneyAccountExample

Lcsaj (JJ-Path) Coverage:

Coverage I 11% |

Goverage Report Statement Coverage:

. D |

Validation Method's Coverage Table :

Validation Report Method Signature tl-:f:i?rage (%) gt:‘::’ﬂmzl*.;t("")
net.sf.jmoney. SortedTreeNode. SortedTreeNode() 0.0% 0.0%
net.sf.jmoney. SortedTreeNode. SortedTreeNode(Object) 100.0% 100.0%
net.sf jmoney. SortedTreeNode. c Object) : int 0.0% 0.0%
net.st.jmoney. SortedTreeNode. insert(MutableTreeNode, int) : void 0.0% 0.0%
net.sf.jmoney. SortedTreeNode. sortChildren() : void 0.0% 0.0%
net.sf.jmoney. model. Account. getDefaultCurrency Code() : String 0.0% 0.0%
net.sf.jmoney model. Account. setDefaultCurrency Code(String) : void 0.0% 0.0%
net.sf.jmoney. model. Account. Account() 100.0% 100.0%
net.sf. jmoney. model. Account. Account{String} 0.0% 0.0%
net.sf. jmoney. model. Account.getName() : String 0.0% 0.0%
net.sf.jmoney. model. Account. getCurrencyCode) : String 0.0% 0.0%
net.sf.jmoney. model. Account.getCurrency() : net.sf.jmoney.Currency 0.0% 0.0%
net.sf.jmoney. model. Account. getBank() : String 0.0% 0.0%
net sf imonev model Account netAcconntNumberf) = Strina 008 0.0%

Figure 30 - Dynamic Analysis HTML Report: Coverage Report (generic)

OPEN-SME Project http://opensme.eu

COPE User Guide Page 34 of 65

Home Component Name: Account

Component Description . .
Execution Scenario: JMoneyAccountExample

Method's Signature: net.sf.jmoney.model.Account.Account()

Coverage Lcsaj (JJ-Path) Coverage:
Statement Coverage: N
T
Validation Report
Source Code: Covered Paths:
1. |public Account() { Path 0
2. ¥

Uncovered Paths:

Figure 31 - Dynamic Analysis HTML Report: Coverage Report (method view pt. 1)

Home

Component Description

Coverage Uncovered Paths:

Coverage Report

Validation

Validation Report

Show Execution Scenario Covered Lines
Don't Show Execution Scenario Covered Lines

Control Flow Graph:

. tdorusand

Figure 32 - Dynamic Analysis HTML Report: Coverage Report (method view pt.2)

1.3.5.5 PERFORMING HISTORY ANALYSIS

The reuse engineer can select to import the history of the project development changes. Currently we
only support Subversion repositories. The reuse engineer can use the svn log command with the --xml
option to extract the development history and save the results in an XML file. Then we can use the
history analysis menu option to import this file in the database.

Notice that although we support importing these development history facts in COPE's database, currently
we are not using this analysis for the recommendation of components, since initial research results were
inconclusive. However we have maintained the feature of importing these facts for further research.

1.3.5.6 PERFORMING PATTERN ANALYSIS

OPEN-SME Project http://opensme.eu

COPE User Guide Page 35 of 65

Pattern analysis is scanning the source code of the Reuse Project for patterns. Not only it identifies the
type of the pattern but it is also able to determine the classes that participate on this specific pattern.

To perform Pattern Analysis for a Reuse Project in COPE:
1. Select “Pattern Analysis” from the Analysis menu.
2. Inthe dialog that appears click to the Start button.

3. When the generation is complete (the progress bar has reached 100%) you can close the process
dialog using the “X” button.

&4

Ful_Text = Search
= Fuzzy Search
v JManey | Class Name || Type ||Size | Used By | Uses(]) | Uses(Ex)| Layer |WMC |[DIT |NOC ||CBO |RFC [LCOM ||Ca|NPM ||[R ||Pattern | Cluster Size |
v net net.sf.jmoney. gui.Navigati... |class | 1597 1 4 9 3 2 [3 1] 4 9 1| 1 2|-8,09No involvemnent in pat... 12| =
v sf net.sf.jmoney. SortedTree... [class | 1047 6| 1 3| 1 3| 2| 2| 1 7| ElG 3| -2,...|No involvement in pat. 2|
¥ jmoney net.sf.jmoney. gui.Selectio... [class | 1708) 3 0j 7 0 7 5 2] o 15 1| 3 7| -0,...No involvernent in pat... 1
® resources net.sf.jmoney.gui.Prefere... [class | 7320 5| 8 28 E 7§ i 8] 59 of 5 2|-10...|No involvernent in pat. 49
Start.java net.sf.jmoney. gui.Categor... [class | 935 5 3 4| 4| 2| 6| 0| 3| 7| 1 4 2| -7,...[No involvement in pat... 8|
SortedTreemq [net.sFjmoney. guiAccount... [class | 4808 9 7 Ex| 3 8§ 0 7| 44 o9 4| -9,...[nvolvedin 1 patterns 10
SortedTreeNo net.si. money ‘moldel‘Cate‘.‘ class | 735 13| 2] El 1 3| 3 0| 2| 3 3| 13 3| -5,...No involvement!n pat... 3|
» qui net.sfjmoney.gui.StatusC.. [class | 587 1 1 3 0 1 5 0 1 4 o 1 1] -4,.. No involvemnent in pat... 1
» images net.sf.jmoney. gui.Account... [class | 9012 6 10 45 6 15 5 0j 15| 78 59 6| 3[-141...|No involvement in Da[}‘ 18
) net.sf.jmoney. gui.AboutDi... [class | 4812 El El 35 1 3 3 1] 3 44 o 3 2| -7,...No involverent in pat... 4
Constants.java BEp—— VR | o o " 4 cf o - - o 7 R 2
VerySimpleDaf|ner sf jmoney.guiMainFra... |class [222... 23| 35) 63 of 48] s of 35[229] =18 28 4[-13...[Involved in 3 patterns 49 I
UserPropertie Et.sF. money.io.OIF class [4 19| 30 9 241 0l 19l 124 252 3 4/-10.. Involvedin 2 patterns 49
» model net.srt.money. modelACco. . [class | 8351 26 /] 20) 2l 41 1 i s 522] 26[37| -6,... N0 Involvementin pat... 9
Currency.java | [net.sfjmoney.model Root... |class | 626 4] 2| 2| 3| 2| 2| 0| 2| 4| 1| 4 2| -4,...|No involvement in pat. [3
NavigationTrey [net.sfjmoney.guiEntryList...|class | 2522 4 5| 12 2 3 6 i 5| 18 o 4 1] -8,...No involvernent in pat... 4
EntryFilterjave net.sf. rmoney.model Abstr... [abst...| 1263 7| 2| 2| 2| 7| 1 4] 2l 1 15 7 7| -2,...Involvedin 1 patterns 4]
' o net.sf.jmone) ‘mclvdejEntr' .. |class | 941 0| 0| 3 [i] 3| 3 0| 0| 7| 3 0 2| -0,...No involvernent in pat... 1
EntryCompara net.sf jmoney. gui.E \tabtgu. class | 6866 1 15 2 33 3 0 1| 63 356 1 28| -1,...,No involvernent in pat... 3
net.sf.jmoney.model. Sessi... [class | 3488 12 4] 10 5 14 1 0j 4 32 33 12 13[-5,...[No involvement in pat... 16
net.sfjmoney. gui.EntryList...[class | 5448 10 6 20 1 El 5 1 6 38 16| 10 4| -8,...]No involvemnent in pat... 3
net.sf.jmoney.model. Doub...|class | 2888 7| 3 5 2 12 El 0j 3 26 36 7 11[-4,...[No involvement in pat... 9
net.sfjmoney.model Cate... |inte... | 317 15 1 4 1 3 1 1] 1 3 3 15 3| -2....Involvedin 3 patterns 3
net.sf.jmoney. gui.Account... [class | 2409 [i] 0j 16 0 2 5 0j o 17 o o 41| -2,...|No involvement in pat... 1
net.sf.jmoney. NavigationT... [class | 2130 2| El 7 a 7 El 1] 3 15 1] 2 7| -5,...J;No involvernent in pat... 4
net.sf.jmoney. gui.EntryList...[class | 5203 3 3 20 3 9 5 1 3 35 12| 3 6| -5,...No involvement in pat... 11
net.sf.jmoney. Constants inte... | 3976 33] 0) 9 [1] 1 1 0) [1] 8| 0] 32 0| -1,...No involvernent in pat... 1
net.sf.jmoney. guilncomeE...|class [121... 8 15 48 6 18 5 of 20 98 99 8 3]-12...Involvedin 1 patterns 18
net.sf.jmoney.model. Cate... [class | 2144 7] 6| 7| 4| El 3 0) 6l 19 4 7 8| -7,...;No involvemnent in pat... 10)
net.sf.jmoney.model Simpl... [class | 1505 4 2 4 3 5 2] 0 2] 14 of 4 5| -4,...[No involvement in pat. 5
net.sk.jmoney.io. MT940 class | 8270 3 9) 24 El 7| 1 [i] 8| 59 15 2 4| -8,...Involvedin 1 patterns 49
R net.sF jmoney. Currency class | 4780| 6| 1 22 1 15 1 0| 0] 45 75 6 11/ 0,8...[No involvernent in pat. 2] .

q
|
‘Eﬁ' 1 The OPEN-SME Consortium

Figure 33- COPE’s main window after Pattern Analysis

CASE STUDY: 4s you can see in “Figure 33- COPE’s main window after Pattern Analysis” after
performing Pattern Analysis for the Reuse Project JMoney in the main window of COPE, some classes
are identified as participants in patterns (the ones in the red border are indicative).

1.3.6 CLUSTER RECOMMENDATION

Using the Cluster Recommendation options, the Reuse Engineer can easily come up with some
recommendations of class clusters that could form possible components. For the time being COPE
provides two methods for recommending such class clusters:

o Dependencies Recommender: uses a genetic algorithm in order to form class clusters using the
source code of the Reuse Project.

e Pattern Recommender: forms a cluster for each pattern detected in the source code of the
Reuse Project.

For component extraction another very useful approach is to select a class and extract a component
based on this class. The resulting component will have the interface of the public methods of the class
and will include all the required classes for the reuse of this class. The reuse engineer can select this
class based on the metrics that are presented in the main window, and especially the Cluster Size, Layer
and R (reusability index) metrics. Classes which are lower in the layered digraph of the project (have

OPEN-SME Project http://opensme.eu

COPE User Guide Page 36 of 65

small layer value), have few dependencies (have small Cluster Size) and have larger R value (are more
reusable) are good candidates for reusable components. The reuse engineer can extract components by
right-clicking any class from the main window that seems promising based on the aforementioned
metrics and extract a component for this class. This same process is also available from the menu item
“Component Makers — Dependency Maker” which will be discussed later in Section “1.3.7”. Strictly
speaking however this is not a recommender although it is an effective way to extract reusable
components, and this is why is not provided as a separate option from the
“Recommend Clusters” menu.

NOTE THAT:

e Since Dependencies Recommender uses a genetic algorithm, each time it runs for the same
Reuse Project can lead to different clusters.

e In order for the Pattern Recommender to run, pattern analysis should have been performed first.

1.3.6.1 RUNNING THE DEPENDENCIES RECOMMENDER
To run the Dependencies Recommender for a Reuse Project in COPE:
1. Select “Dependencies Recommender” from the Recommend Clusters menu.

2. If Dependencies Recommender has already run once, the following dialog offers the Reuse
Engineer the option of choosing between keeping the current results or run Dependencies
Recommender from scratch.

Dependencies-based Recommender

Cluster Recommendation appears to has already been
performed For the selected Reuse Project. Would you like
to use the 'existing clustering' or 'start over'?

Use Existing | | Start Over

Figure 34 — Introductory dialog to Dependencies Recommender

3. If no errors occur COPE provides the Reuse Engineer with the following dialog

OPEN-SME Project http://opensme.eu

COPE User Guide Page 37 of 65

¢

clusterLuvlzNum 4 FategoryTreeiMode
clusterLulzNum 3 fntryComparato

LDstractCategory.java (0,55)
10f frecountEntri eljava (1) SortedTreeNode | SortedTreeModel | ‘ CategoryPanel | ‘ Category TreeCellRenderer I E
riav ategory

ategory.jav)
ategoryMo: o
ategoryPanel java |

1

| CategoryNode I ‘ AbstractCategory | ‘ Category TreeModel | CheckComparater
ootCategory.j
electionList.jav
TransferCategory ‘ ‘ SplitCategory I ‘ RootCategory | | SimpleCategory

luster Info Viewer | Class Info Viewer K

Figure 35 — Dependencies Recommender main dialog

In the red area, the Reuse Engineer can find all the recommended clusters proposed by the
Dependencies Recommender.

By selecting a cluster, the class files of this cluster appear in the green area. The Reuse
Engineer can move classes from one cluster to another simply by right-clicking to one of the
classes located to the green area and selecting the cluster to which he wishes the selected class to
be moved. Finally, classes can also be moved in an artificial cluster, the “GlueCluster”, which
serves as a pool for classes that do not fit to any of the proposed clusters. For each class a
specificity metric of the class for the cluster is provided in parentheses. This value is the ratio
of other classes in the cluster depending on the class divided by the total humber of classes in
the cluster. Specificity can be used to assist a reuse engineer in deciding if a class belongs to the
cluster that it was classified to, or that it should be moved to a different cluster. Right-clicking in
the cluster classes’ the reuse engineer can choose to sort the classes based on their specificity to
quickly view the most and less specific classes in a cluster.

Apart from the class list, selection of the cluster also results in its UML diagram’s generation.
This diagram is located in the blue area of the dependencies recommender dialog. UML graphs
are generated using UMLGraph8.

Finally, the brown area provides extra information about the keywords derived from Latent
Semantic Analysis and Tag Cloud analysis (see Source File Indexing). This information is
available in Cluster and Class level. This information can provide the reuse engineer with hints
on the purpose of the cluster and the purpose of each class in the cluster.

1.3.6.2 RUNNING THE PATTERN RECOMMENDER

To run the Pattern Recommender for a Reuse Project in COPE:

1. Select “Pattern Recommender” from the Recommend Clusters menu.

8 http://www.umlgraph.org/

OPEN-SME Project http://opensme.eu

COPE User Guide Page 38 of 65

2. If Pattern Recommender has already run once, the following dialog offers the Reuse Engineer the
option of choosing between keeping the current results or run Pattern Recommender from scratch.

Pattern-based Recommender

his is the first time you are accessing Pattern-Recomender For this project! Press Start Ove

Start Over

Figure 36 — Introductory dialog to Pattern Recommender

3. If no errors occur COPE provides the Reuse Engineer with the following dialog

Singleton_0 AbstractCategory.java (1)
(Object)Adapter-Commmand_1 | [TransferCategory.java (1)
(Object)Adapter-Cormnmand_2
(Object)Adapter-Command_3

State-Strategy_4

State-Strategy_ 5

State-Strategy_6

State-Strategy 7

AbstractCategory
i)

TransferCategory

Cluster Info Viewer | Class Info Viewer

Figure 37 — Pattern Recommender Main Dialog

This dialog is identical to the Dependencies Maker’s. The only difference is that in Patter Recommender
dialog, instead of clusters the Reuse Engineer sees all patterns of the Reuse Project, detected during the
Pattern Analysis phase (see Pattern Analysis).

1.3.7 COMPONENT MAKING

Based on the analyses and recommendations carried out earlier the Reuse Engineer can now produce
independent software components and then place those components in the repository using the
‘Knowledge Manager’ feature. In this section we discuss the different component makers available in
COPE. These component makers are available from the “Component Makers” menu. Currently there are
four different component makers:

OPEN-SME Project http://opensme.eu

COPE User Guide Page 39 of 65

1. Interface Maker: This component maker uses as input the clusters produced by the
“Dependencies Recommender” (see Section 1.3.6.1). The Reuse Engineer can select one of the
clusters produced there and extract a component for this class cluster.

2. Dependency Maker: This component maker presents all the classes of the project along with
their reusability assessment. The reuse engineer can select a class and extract a component
providing the functionality of the selected class. The extracted component will contain the class
and its dependencies. Notice that the same functionality is also available from COPE's main
window by right-clicking a class and selecting “Extract component from here” (see Figure 38 —
Extracting component from classes selected in the main window of COPE).

3. Adapter Pattern Maker: This component maker presents the clusters produced by the 'Pattern
Recommender' (see Section 1.3.6.2) and displays clusters involved in Adapter pattern instances.
The reuse engineer can select a cluster and extract a component for this cluster. The component
will have the interface of the adapter.

4. Proxy Pattern Maker: This component maker presents again the clusters produced by the
“Pattern Recommender” but this time it displays only clusters involved in Proxy pattern
instances. The reuse engineer can select a cluster and extract a component for this cluster. The
component will have the interface of the proxy.

The dialog displayed in all cases is the same and the results of this process are the same (an independent
component). Therefore we will explain here only the second component maker (the Dependencies
Maker). The process for the other makers is exactly the same with the caveat the extracted components
have the semantics mentioned in the previous list.

Name v u Search
Fuzzy Search
v JMoney [class Name | Type || Size ||Used ... |Use... [Uses(... |[Layer|[WMC ||DIT | NOC|[CBO |[RFC |LCOM|/Ca |NPM R ||Pattern ||Clusters... |
* net net.sf.jmoney.gui.PreferencesDialog class 7320 5 8l 28 9 7§ Q 8] 59 o 5 2|-10...[No involvernentin ... 49| =

net.sf.jmoney.gui.CategoryComboBox class | 935 5 3 4 4 2l 6 0 3l 7 1| 4 2[-7,...[Noinvolvement in ... 8
net.sfkjmoney.gui.AccountChooser class 4809 9| 7| 31 3 8 6 0 7| 44 i 4[-9,...Involvedin 1 patter... 10
net.sf jmoney.model. CategoryMNode class | 735 13 2| 2| 1 3 3 [1] 2| 6| 3| 13] 3| -5,... Mo involvernent in ... 3|
net.sf.jmoney.gui.StatusComboBox class | 587 1 1 3 [i] 1 5 [i] 1 4 0 1 1| -4,...No involverment in... 1
net.sf.jmoney.gulAccountBalancesReportPanel class (9012 [10 45 6 15| 5 0 15 78 59| 6 3[-11...[No involvernent in ... 18
net.sfjmoney.gui.AboutDialog class [4812 3 3 35 1 3 6 0 3] 44 o 3 2[-7,...No involvement in... 2
net.sfjmoney.guiEntryFilkerPanel class (4419 5 El 20 4 12| 5§ i 9 M g 5 4] -9,...[No involvernent in ... 12
net.sf.jmoney.gui.MainFrame class | 22... 28 35 63 9 48] 6 0 35 229 818[28 4[-13...Involvedin 3 patter... 49
net.sf.jmoney.io. QIF class [15.. 4 19| 30| 9 24 1 0l 19] 124 252 3 4|-10...Involved in 2 patter... 49
net.sf.jmoney.model. Account d 6 7 2 1 7 6 7 -6,... Noinvolvement in...
net.sf.jmoney.model.RootCateqgory lctass 626) 4] 2] 2| 3 2l 2 i a 4 1| 4 2| -4,...[No involvernentin ... 6
net.sf, [LECIR e ———— class | 2522, 4 5i 12) 2| 3 8 [i] 5| 18 o 4 1| -8,...No involvement in... 4]
net.sFjmonl S ORI STl S0 abs... |1263] 7 2| 2) 2| 71 4| 2l 11 15| 7 7| -2,...Involvedin 1 patter... 4|
net.sfjmoney.model. EntryListModel class | 941 0 0| 6 [1] 3 3 [1] [1] 7| E 2[-0,...[No involvement in ... 1
net.skjmoney.guiEditableMetalTheme class | 6866 1 15 2| 331 3 0| 1| 63 356] 1 28[-1,...No involvement in ... 3|
net.sFjmoney.model. Session class | 3488 12| 4] 10, 5 14 1 [1] 4 32 33| 12 13| -5,...[Mo involverment in ... 16|
net.skjmoney.gui.EntrylistitemlLabels class | 5448 10, 6| 20 1 El 5 1 6| 38 16| 10, 4| -8,...No involverment in... 3|
net.skjmoney.model.DoubleEntn class [2838 7 3 5 2] 12 2 0 3| 26 36| 7| 11[-4..Noinvolvementin... 9
net.skjmoney.model. Category inte...| 317 15 1 4 1 3 1 0 1 3 3] 15 3] -2,...Involvedin 3 patter... 3
net.sf.jmoney.gui.AccountOverviewPanel class | 2409, 1] 0) 16) [1] 2| 5 [1] o] I 0 0 1] -2,...[No involvernent in ... 1
net.sf.jmoney.MNavigationTreeModel class [2190 2| 3 7| 2 73 0 3] 15} 11 2| 7| -5,...[No involvement in ... 4
net.sf.jmoney.gui.EntryListitem class | 5203, 3 3 20 3] 9 5 1 3] 35 12| 3 6[-5,...[No involvernentin ... 11
net.sf.jmoney.Constants inte...|3976 33| 0f El 0 1 1 0 0 8| 0f 32| 0| -1,...No involvement in... 1
net.sf.jmoney.quiincomeExpenseReportPanel class | 12... El 15 48 6 18 5 o 20 98 99 8| 3[-12...Involvedin 1 patter... 18
net.sf.jmoney.model.CategoryTreeModel class | 2144, 7 6| 7 4] 3 3 0| 6 191 4 7 8| -7,...No involvement in... 10|
net.sfjmoney.model. SimpleCategory class [1505 4] 2| 4 3 5 2| i 2[14 a4 5| -4,...Noinvolvement in ... 5
net.sfjmoney.io.MT940 class |8270) 3 El 24 El 71 [1] 8| 59 15| 2| 4| -8,...Involvedin 1 patter.. 43
net.sfjmoney.Currency class | 4780, 6 1 22| 1 15 1 0| 0] 45 75 & 11[0,8... No involvement in ... 2|
net.sfjrmoney.model. SplittedEntr class [2398 7 2 6 2 9 2 0 2[25 of 7 9| -4,...Involvedin 2 patter.. E
net.skjmoney.gui.Date ComboBox class |1731 6 6| 9 1 4 6§ 0| 7] 13| 6] 5 4| -9,...[No involvement in... 3|
net.sf.jrmoney.guiEntrylistitemExtended class [3807 1 3 16 4 3] 6 0 3] 22 o 1 2[-7,...[Noinvolvernent in ... 12| .

E 1 .
‘ o= | The OPEN-SME Censortium

Figure 38 — Extracting component from classes selected in the main window of COPE

1.3.7.1 RUNNING THE DEPENDENCIES MAKER
To run the Dependencies Maker for a Reuse Project in COPE:

1. Select “Dependencies Maker” from the Component Makers menu.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 40 of 65

£ Dependency Maker

Classes Interface Generation Policy
I\CLass Name || Class Type |Reusabil... Generate Interface for Selected Class,
net.sfjmoney.gqui.NavigationTreeCellRenderer class -8,09
net.sfjmoney. SortedTreeModel class 2,723 Generate Interfaces for Classes that are not externally used.
net.sfjmoney. qui.SelectionComboBox class -0,652
net.sfjmoney.qui.PreferencesDialog class -10,32,
net.sf.jmoney.qui.AccountChooser class -9,662,
net.sfjmoney. gui.CategoryComboBox class -7,155
net.sf.jmoney.model.CategoryMode class -5,041
net.sf.jmoney.gui.StatusComboBox class -4,629
net.sf.jmoney.gui.AccountBalancesReportPanel class -11,158
net.sf.jmoney. qui.EntryFilcerPanel class -5,628
net.sF jmoney. qui.AboutDialog class -7,704 h’
net.sf.jmoney.model. Account -6,132
net.sfjmoney.io. QIF class -10,367
net.sf.jmoney. qui.MainFrame class -13,435
net.sfjmoney.model.RootCategory class -4,958
net.sfjmoney.model.AbstractCategory abstract class -2,922
net.sf.jmoney. qui.Entrylistlceml abelsExtended class -8,912
net.sf.jmoney.qui.EditableMetalTheme class -1,792
net.sf.jmoney.model.EntryListModel class -0,516 You can select multiple generation policies using the Control (Ctrl) key.
net.sf.jmoney.model.DoubleEntr class -4,375
net.sfjmoney.model.Session class -5,355
net.sf jmoney.qui.EntryListltemnLabels class -8,028
net.sfjmoney MavigationTreeModel class -5,686
net.sf.jrmoney. qui.EntryListitem class -5,916 Compemant i
net.sf.jmoney.model.Categon interface -2,529 Account
net.sfjmoney.gui. AccountOverviewPanel class -2,152,
net.sf.jmoney. quilncomeExpenseReportPanel class -12,047 | Generate Component
net.sf.jmoney.Constants interface -1,027 e
net.sf.jmoney.model.SimpleCategorn class -4,925 =
net.sfjmoney.model.CategoryTreeModel class -7,865 enerated rie
net.sfjmoney.io. MT940 class -8,476
net.sf.jmoney.Currency class 0,828
net.sfjmoney. qui.EntryListlcemExtended class -7,444
N N - Ty N Y. T P . e

Figure 39 — Dependency Maker main dialog

¢ In the red area the Reuse Engineer can see all the classes (their fully qualified names) of the
Reuse Project along with their “Class Type” and “Reusability Index” (for learning more about
the Class Type and Reusability Index information please see Performing Static Analysis section)

e In the green area COPE provides the available “Interface Generation Policies” for the Reuse
Engineer to choose. More specifically these are:

o Generate Interface for Selected Class: with this option, COPE automatically generates
an interface only for the class selected by the Reuse Engineer.

o Generate Interfaces for Externally Referenced Classes: with this option, COPE
automatically generates interfaces for all classes that are included in the generated
component and also are referenced from project classes that are not included in the
selected component.

o Generate Interfaces for Classes that are not used: with this option, COPE
automatically generates interfaces for all the classes that are members of the selected
component the Reuse Engineer is about to create and they are not used by any class of
the component.

NOTE THAT: The Reuse Engineer can select more than one of the aforementioned “Interface
Generation Policies” using the CTRL button.

e In the blue area the Reuse Engineer gives a name to the component and he can generate the
component by clicking the “Generate Component” button.

¢ Once the component has been successfully generated, its files are listed in the brown area.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 41 of 65

£ Dependency Maker

Classes Interface Generation Policy
(Class Name |Class Type |[Reusability... | Generate Interface for Selected Class.
net.sfjmoney.model.CategoryMode class -5,041| =
net.sfjmoney.gui.statusComboBox Class 4,620 Generate Interfaces for Classes that are not externally used.
net.sfjmoney. qui.AccountBalancesReportPanel class -11,158
net.sfjmoney. qui.EntryFilterPanel class -9,628
net.sfF jmoney.qui.AboutDialog class -7,704
class -6,132]
net.sf.jmoney.io. QIF class -10,367
net.sf jmoney.qui.MainFrame class -13,435
net.sf.jmoney.model.RootCategory class -4,958
net.sf.jmoney.model.AbstractCategon abstract class -2,822
net.sfjmoney.gqui.EntryListltemnlLabelsExtended class -8,912
net.sf.jmoney.gui.EditableMetalTheme class -1,792
net.sfjmoney.model.EntrylistModel class -0,916, You can select multiple generation policies using the Control (Ctrl) key.
net.sf.jmoney.model.CoubleEntr, class -4,975
net.sfjmoney.model.Session class -5,355
net.sfjmoney.qui.EntryListlternLabels class -8,028
net.sFjmoney.NavigationTreeModel class -5,686) Component Name
net.sf.jmoney.qui.EntryListitem class -5,916,
net.sf.jmoney.model.Categon interface -2,529
net.sf.jmoney. qui.AccountOverviewPanel class -2,152
net.sfjmoney.qui.lncomeExpenseReportPanel class -12,047 | Generate Compenent |
net.sf.jmoney.Constants interface -1,027
net.sfjmoney.model.SimpleCategon class -4,925)
net.sfjmoney.model.CategonyTreeModel class -7,865 EhowGenenedilless
net.sf.jmoney.io.MT940 class -8,476
net.sfjmoney. Currency class 0,828
net.sf.jmoney. qui.EntrylistltemExtended class -7,444|

/home/akritiko/JMoney/generated/Account/sre/net/sF/imoney/Currency.java
/horme/akritiko/JManey/generated/Account/sro/net/sF/jmoney/Constants.java
/home/akritiko/JMoney/generated/Account/src/net/sf/jmoney/model/Entry. java
/horme/akritiko/JMoney/generated/Account/src/net/sF/jmoney/SortedTreeMNode java b
/home/akritiko/JManey/generated/Account/src/net/sF/imoney/model/SplittedEntry java
/home/akritiko/JMoney/generated/Account/build.xml
/horme/akritiko/JMoney/generated/Account/src/net/sf/jmoneay/model/DoubleEntry java
/home/akritiko/JMoney/generated/Account/src/net/sF/jmoney/model/Account.java
/home/akritiko/JMoney/generated/Account/src/net/sf/jmoney/model/Category.java
/home/akritiko/JMoney/generated/Account/src/net/sf/jmoney/model/CategoryNode java

Figure 40 — Dependency Maker dialog after a component was successfully generated

Extracted components will be opened for further processing using an IDE (e.g. Eclipse or NetBeans).
The reuse engineer will use the IDE to comprehend the component, create test cases for it or execution
scenarios, discover further dependencies that are required which are not recoverable through static
analysis (e.g. data dependencies). The component can then be tested dynamically (as described in
Section 1.3.5.4) using the test cases or execution scenarios that were developed by the reuse engineer.

Next we will discuss the component extracted from the component makers and have a closer look to
their structure before looking at importing these components in the COMPARE component repository
with the help of the Knowledge Manager.

1.4 COPE’S COMPONENTS STRUCTURE

As we have already mentioned, COPE is a set of tools that assist the reuse engineer to produce
autonomous, fully functional components. These components apart from the source code consist also of
a variety of accompanying meta-data. All this information is being packaged as depicted in the following
figure.

Notice that components are generated in the project’s folder which resides in user’s home directory
(usually in /home/<username>). The project folder will have the name of the project provided by the
reuse engineer during the project creation. In this folder there will be a folder called ‘generated’ in
which different folders will be created (one for each generated component). The component folder will
have the component name provided by the reuse engineer (see Figure 40) and will contain sub-folders as
depicted in Figure 41. The project folder will look similar to the one depicted in Figure 42.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 42 of 65

]

COPE generated
components

Component Mame packaging
le.g. JAccountComponent)

Readme.ixt

Contains information such as:

1) A short paragraph describing the
component

2) Originating OSS Project

3) License or licenses

4) Programming language and
Technalogy

5) Cther component it uses if any
6) Domain and Concept

]

src
(Folder containing all the extractad

sourcs files of the component including
ary generated provided interfaces)

]

lib
R (Folder containing all the extemal
reguired libraries for the component)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| |
|
: doc executionScenario
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{Folder containing the generated (Folder containing the generated

- prohXML xml, test java,

executionScenario java files and doc
folder)

documentation for the component. The
documentation can be any automatically
generated documentation from
commercial tools. It also includes
generated class diagrams for the
component source files)

]

]

{Folder containing the generated HTML
documentation from the testing process
= — - including the line, path and test coverage, - ——
as well as the execution scenarios used
and the generated test cases and the
madels)

Coc
(Folder containing HTML Report)

o ——————

Figure 41: COPE generated components’ packaging

OPEN-SME Project http://opensme.eu

COPE User Guide Page 43 of 65

« [PHome JMoney generated net.sfjmoney.model. Account & = Q search

- - d el - l

bin clusters doc generated index lib JMoney.dat

repoll
nnnnn

JMoney.properties

Figure 42: Project Folder

1.4.1 RooT DIRECTORY (COMPONENT’S NAME)
The root folder has the name of the generated component and includes all the available information for
this specific component.
1.4.2 README.TXT
A summary for the generated component.
e A short description of the functionality of the component
e The name of the Free/Libre Open Source Project from which the component was extracted
e The type of license (or licenses) under which the source code of the component was published
e The programming language of its source code
¢ Information about other technologies used by the component (if any)
¢ Information about other components used by the component (if any)

e The domain concept of the component

1.4.3 SOURCE DIRECTORY (SRC/)

The source directory contains the source code of the extracted component. It also contains all the
provided interfaces generated automatically by COPE.

1.4.4 LIBRARIES DIRECTORY (LIB/)

The libraries directory contains all the necessary external libraries in order for the component to be

OPEN-SME Project http://opensme.eu

COPE User Guide Page 44 of 65

runnable.

1.4.5 DOCUMENTATION DIRECTORY (DOC/)
The documentation of the source code and UML class diagrams for the class files of the component.
Both the documentation and the UML diagrams can be generated using appropriate free or commercial
software.
1.4.6 TEST DIRECTORY (TEST/)
Test material for the extracted component. Contains:
e Execution Scenario (directory)
o Line, Path and Test coverage information
o Execution scenarios used by the Reuse Engineer for the specific component
o Generated test cases and possible ModelJUnit models

e Generated documentation (in form of HTML) including the results of the testing process
(directory)

1.5 THE KNOWLEDGE MANAGER

The Knowledge Manager provides the Reuse Engineer with a way of providing meta-information for the
components s/he generates. Moreover s/he can classify those components to a specific domain and
concept.

Moreover, the Knowledge Manager serves as an intermediate between the COPE platform and the
component repository of COMPARE.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 45 of 65

Component Management Console

Architectural Patterns Quality Attributes % Open Component Classification Console

Components Business Components Languages/Technologies

v @) Components
» #5 Enterprise
3¢ Resource %
8 User
 Workspace
_Unknown

vy vV vy

The semantic repository is not synchronized with COMPARE. Click here to synchronize

Figure 43 — Knowledge Manager: Main dialog

Components (tab): in this tab the Reuse Engineer can navigate through all the available generated
components of COPE using the menu to the left. As you see in “Figure 43 — Knowledge Manager: Main
dialog” there are some predefined categories (tiers) for the generated components [3]. More specifically:

e Enterprise: These components represent enterprise-level concepts. For example an Account
component falls into this category, because it represents a business concept of the Accounting
business domain.

e Resource: These components represent more low-level infrastructure software components. For
example a DatabaseUtil component providing functions for storing, retrieving etc. data from a
database would fall into this category. Notice that an Enterprise component may contain
internally a resource component (e.g. an Account component would include internally a
component for accessing, storing, removing etc. accounts from a database). Usually when these
lower-layer components are encapsulated by an enterprise component their interface is hidden
from external reusers, however in some cases they may be useful by themselves (e.g. a logging
component, or an email component).

e User: These components represent user interface level components (for example an
AccountCreationDialog component could be useful for creating accounts from the user
interface)

e Workspace: These components represent workflow or session handling software components.
For example a reuser could reuse a component that handles the creation of an Account by
copying data from another Account. The component that handles the transaction of moving the
information from one Account component to the other, could be a Workspace component.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 46 of 65

e Unknown: This category contains the components that have been generated using COPE but
were not associated with one of the aforementioned tiers by the Reuse Engineer.

Languages / Technologies (tab): in this tab the Reuse Engineer can add or remove programming
languages (e.g. Java, C, C++, etc.) and technologies (e.g. J2SE, J2ME, etc.) relative to the components
he works with.

Open Component Classification Console (tab): this tab helps the reuse engineer to classify his
components with the use of MetaModel, domains and concepts. More specifically:

e A MetaModel group is a category of Meta-Models associated with an application domain (e.g.
E-Business domain could represent a MetaModel group).

e A MetaModel is a model representing concepts from the business domain and their associations
(e.g. Accounting MetaModel could be a MetaModel of the E-Business domain). Such a meta-
model can be reused if available or constructed as the reuse engineer discovers concepts of
application domains as s/he reverse engineers existing OSS systems.

e A domain is a specific area or market segment for which applications are being developed (e.qg.
Accounting domain).

e A concept is a specific entity or activity relating to an application domain (e.g. Account,
Business Transaction, Shopping Cart etc.)

NOTE THAT: The data provided at the component classification console is optional and is
expected to start taking shape as the reuse engineers are using the COPE platform to create
components. It is estimated that at least 3 systems are necessary as input to a domain engineering
process. To avoid the antipattern of domain analysis paralysis [4], COPE does not require that reuse
engineers should build application domains MetaModels before starting extracting and providing
components for reuse. Instead components can be reused and the domain MetaModel along with its
concepts can be formed as the reuse organizations become more mature and systematic in their reuse
processes. In other words, we anticipate that the usage of COPE will provide a gradual and iterative
path towards systematic reuse.
1.5.1 CHARACTERIZING A GENERATED COMPONENT

Component characterization consists of a series of information the Reuse Engineer needs to specify for a
generated component. As you can see in the following image, this information is:

e SVN repository: The SVN address from where the packaged component can be downloaded.
e Version: The version of the component

e License: The license under which the component can be reused

e Language: The programing language to which the component was implemented

e Technologies: A specific technology with which the component was designed

o Description: A description of the main functionality of the component

e Uses components: Possible dependencies to other components

o Classification details: MetaModel, domain and concept(s) specification for the component

NOTE THAT:

e In order for the information to be saved you need to use the “save” buttons located to the right of

OPEN-SME Project http://opensme.eu

COPE User Guide Page 47 of 65

each form field.
o All fields are optional. This means that every field can be left empty and be updated later on.

e In the classification details the Reuse Engineer can specify multiple concepts but only one
MetaModel and domain.

e The contents of the fields of “Language”, “Technology” and “Classification Details” can be
dynamically changed by the Reuse Engineer.

Component Management Console

Components | Business Components | Languages/Technologies | Architectural Patterns | Quality Attributes | i Open Component Classification Console

' @c 4 ’
& Components -Classification Detail |

» & Enterprise
» % Resource SVI: CdiSavey) MetaModel:
> & User
» [Workspace Domain:
v Unknown Version: bed ...
— h Concepts
License: k..)
Language: - Technology: v
Description
| ki Save |
-Uses Component
| O Select | a
| Name |Version | Tier

The semantic repository is not synchronized with COMPARE. Click here to synchronize

Figure 44 — Characterizing a component

1.5.2 ADDING/ REMOVING / RENAMING LANGUAGES AND TECHNOLOGIES

The content of the fields of Language and Technology can be managed by the Reuse Engineer using the
“Languages / Technology” tab. As you can see in the following image, in this tab, there are two
separated areas that provide the Reuse Engineer with the options of adding, removing and renaming
Languages and Technologies at will.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 48 of 65
Components | Business Components | Languages/Technologies | Architectural Patterns | Quality Attributes | & Open Component Classification Consale
Existing Languag rExisting Technologi
New Language Name New Technology Name
]|Qndd‘ | @ndd
JAVA B Rename 25E B Rename
@ Remove @ Remove

The semantic repository is not synchronized with COMPARE. Click here to synchronize

Figure 45 — Managing Languages and Technologies dialog

Components | Business Components | Languages/Technologies | Architectural Patterns | Quality Attributes | s Open Component Classification Consale

Existing Languag

New Language Name
| @ndd
JAVA B Rename

@ remove

rExisting Technologi

New Technology Name

| ai Add |
‘ . Rename ‘

J25E
‘ € Remove |

The semantic repository is not synchronized with COMPARE. Click here to synchronize

Figure 46 — J2ME technology added

NOTE THAT: The changes made using this dialog become automatically available to “Knowledge
Manager” as you can see in the following image the “J2ME” technology we added in the previous step is
now available to the “Components” tab.

OPEN-SME Project http://opensme.eu

COPE User Guide

¥ @ Components
v ¥ Enterprise
¥ QRCodeReader
£ QRCodewriter
¥ QRDetector
£ QRMultiDetector
£¥ test_component_co|
v 3 Resource
£ Account
¥ Bufferedimagelurnit
¥ HistogramBinarizer
» & User
» [Workspace
¥ _Unknown
¥ JAccount
¥ net.sF.borg.model.er
¥ net.sfjmoney.gui.Ac
¥ net.sFjmoney.io MTS
£¥ net.sfjmoney.model
£¥ net.sfjmoney.model

Page 49 of 65
Components | Business Comnponents | Languages/Technologies | Architectural Patterns | Quality Attributes | ' Open Component Classification Console
rClassification Detail
SVN: |13.teilar.gr/opensme/ZXing/AztecReader/ | | kd Save |
’ gr/op 1e/2Xing} /) CiSaves MetaModel:
Domain:
Version: |1.0 |_ked Save |
Concepts
License: | kd Save |
Language: |JAVA| + Technology: v
o
Jz2ME
DCescription
This component can detect and decode Az o animage,
It is suitable for low-end mobile devices and all java platforms.
| ke save |

Uses Component:

| © select | | @ Remove

| Narme || Version || Tier |

BufferedimageluminanceSource ‘1.\] ‘Resource |

HistogramBinarizer ‘1.\] ‘Resource |

The semantic repository is not synchronized with COMPARE. Click here to synchronize

Figure 47 — J2ME technology available at the Components Tab

1.5.3 CLASSIFYING COMPONENTS

Classifying a component using the Knowledge Managers is identical to mapping the component with a
MetaModel. Before the Reuse Engineer can do that s/he usually must create such a MetaModel using the
“Open Component Classification Console” tab of Knowledge Manager.

Component Classification Console

Component MetaModels | Domains | Concepts | 4 Return ko Component Management Console

.- MetaModels

Figure 48 — The main dialog of the Component Classification Console

A MetaModel consists of three parameters:

e Domain (unique)

OPEN-SME Project

http://opensme.eu

COPE User Guide Page 50 of 65

e Conpept(s)
e Tier (optional)

In order for the Reuse Engineer to be able to define such a meta-model, the appropriate domain and
concept(s) should have been created beforehand.

1.5.3.1 ADDING ANEW CONCEPT

1. Go to the “Concepts” tab of the Components Classifying Console
Right-click to “Concepts” element located to the left area of the dialog
From the pop-up menu choose “Add Concept”

In the dialog that appears type the name of the new concept

o w DN

Click “OK” (at this step you can also abort the new concept creation by clicking on “Cancel”)

Cornponent MetaModels | Domains | Concepts | & Return to Component Management Console

@ Concept Name

Give the name of the new concept

l l

@ Cancel </ OK |

1.5.3.2 ADDING ANEW DOMAIN
1. Go to the “Domains” tab of the Components Classifying Console

Follow steps 2 to 5 of the “Adding a new concept” process (see Adding a new Concept)

1.5.3.3 ASSIGNING CONCEPTS TO DOMAINS

After a domain has been created the Reuse Engineer can assign concepts to it. In the following image we
have just created the “Accounting” domain and we need to assign the concept “Account” to it.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 51 of 65

1. We click on the “Select” button located in the right area of the dialog (see Figure 49 — Assigning
concept to domain)

Component Classification Console

Cornponent MetaModels | Domains | Concepts | & Return to Component Management Console

v 1 Domains

rHas Concepts

| O Select

Q Remove

Figure 49 — Assigning concept to domain

2. In the dialog that appears (“Select Concept”) select the concept you want to assign.

™ Select Concept

¥ £ Concepts
Account

|@cCancel| | < OK

Figure 50 — Select concept dialog

3. Click to the “OK” button

OPEN-SME Project http://opensme.eu

COPE User Guide Page 52 of 65

Component Classification Console

Cormponent MetaModels | Domains | Concepts | & Return ko Component Management Console

¥ & Domains

rHas concepts

Account | © select |

0 Remove

Figure 51 — Concept successfully assigned to a domain

The concept “Account” was successfully assigned to the “Accounting” domain.

NOTE THAT: If you go to the “Concepts” tab and select the “Account” concept you will see that the
“Accounting” domain was automatically defined as the domain of the “Account” concept.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 53 of 65

Component Classification Console

Cormponent MetaModels | Domains | CONCEpts | & Return ko Component Management Console

v &t Concepts .
>m rHas Domains

Accounting | © select |

Figure 52 — Domain successfully assigned to concept

1.5.3.4 CREATING THE METAMODEL

Having crated the necessary concepts and domains the Reuse Engineer can now proceed with creating a
MetaModel.

NOTE THAT: For COPE, each MetaModel should be a member of a MetaModel group.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 54 of 65

Component MetaModels | Domains | Concepts | & Return to Component Management Console

19 1VetaModels]

Give the name of the new group

l l

|@ Cancel| | </ OK J

Figure 53- Component MetaModels Dialog

To create a MetaModel:

2. Go to the “Component MetaModels” tab of the Components Classifying Console
Right-click to “MetaModels” element located to the left area of the dialog

From the pop-up menu choose “Add Group”

In the dialog that appears type the name of the new MetaModel group

o a &~ w

Click “OK” (at this step you can also abort the new concept creation by clicking on “Cancel”)

OPEN-SME Project http://opensme.eu

COPE User Guide Page 55 of 65

Component Classification Console

Component MetaModels | Domains | Concepts | é& Return ko Component Management Console

v L MetaModels

» 1§ Finance Hlas Domain

| © select | @ remove

Figure 54 — MetaModel group successfully created

Once the MetaModel Group is created:

1. Right-click to the name of the MetaModel group

2. From the pop-up menu choose “Add MetaModel”

3. Inthe dialog that appears type the name of the new MetaModel
4

Click “OK” (at this step you can also abort the new concept creation by clicking on “Cancel”)

OPEN-SME Project http://opensme.eu

COPE User Guide Page 56 of 65

Component Classification Console

Component MetaModels | Domains | Concepts &% Return to Component Management Console

v & MetaModels .
v T Finance Has Domain -Has Concepts

<

| © select @ rRemove

Has Tier————
’ = a Select @ Remove

Figure 55 — MetaModel successfully created

After the successful creation of the MetaModel, the reuse engineer can now assign a domain to the
MetaModel.

To do so:

1. Click to “Select” button located to the “Has Domain” of the Component Classification Console

2. From the dialog that appears, select the appropriate domain and click “OK”.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 57 of 65

@ select Domain
h:

¥ [| Domains
Accounting

1@ Cancel | </ OK
Figure 56 — Domain selection window
As you can see in the following image the domain is now selected. In addition the concepts associated
with this domain have also been set to the “Concepts” area of the MetaModel.

NOTE THAT: All the dialogs of the Knowledge Manager that allow the Reuse Engineer to add elements
also allow removal and renaming of those elements.

Component Classification Console

Component MetaModels | Domains | Concepts | é& Return ko Component Management Console

v & MetaModels

v '8 Finance Has Domain -Has Concepts
SRS | | ccoun
e Select | Q Remove |

Has Tier——
’ v | @Sele(t | Remove

Figure 57 — Metamodel successfully created

With the creation of the MetaModel the Reuse Engineer has all the necessary information to classify the

OPEN-SME Project http://opensme.eu

COPE User Guide Page 58 of 65

component. To do so s/he must return to the main dialog of the Knowledge Manager by visiting the
“Open Component Classification Console” tab.

1.5.3.5 CLASSIFYING THE COMPONENT

1. From the components tab located in the main dialog of the Knowledge Manager select the
component you wish to classify (usually located under the “ Unknown” group).

2. Right-click to the component.
3. From the pop-up menu that appears choose “Classify”.

4. The “Select Metamodel” dialog appears. Choose the metamodel and click to the “OK” button.

Component Management Console

Components | Business Components | Languages/Technologies | Architectural Patterns | Quality Attributes | & Open Component Classification Console

v @ Components -

. -Classification Detail
» & Enterprise . =
* & Resource S Ul Save | MetaModel:
» & User
» O Workspace Domain:
v Unknown Version: |1 ¥
- [Ac Concepts
MIT I hed.. |
ge: |JAVA| = Technology: |J25E | =
Description
| ki save |
-Uses Component:
| Q) select | @ Remove
| Narme | Version || Tier |

The semantic repository is not synchronized with COMPARE. Click here to synchronize

Figure 58 — Classifying a component

OPEN-SME Project http://opensme.eu

COPE User Guide Page 59 of 65

@ select a MetaModel

v & MetaModels
v & Finance

| @ Cancel| | Z0OK
Figure 59 — MetaModel selection

Once the MetaModel is selected the classification details area for the component is automatically
updated.

Component Management Console

Components | Business Components | Languages,/Technologies | Architectural Patterns | Quality Attributes | % Open Component Classification Console

v @ Components

e o -
» & Enterprise -Classification Det
2 SVN: | ks J
v & Resource i Save. MetaModel: | Accounting
LH3Account |
» & User Domain: |Bank account
» O Workspace Version: |1 (..) ‘
_Unknown Concepts
Account
License: |GPL [=
Language: |JAVA| + Technology: |J25E | +=

Description

JMoney Account class is a model For accounts with entries. Entries can be regular, double or split.
h Account originates from the JMoney project (http://sourceforge.net/projects/imoney/)

| ki save

Uses Component

| QSEle:t ‘ ® Remove

| MNarme |Wersion | Tier

The semantic repository is not synchronized with COMPARE. Click here to synchronize

Figure 60 — Component classification successfully finished

NOTE THAT: The classification of a component can easily change by right-clicking to the component
and choosing “De-classify” and then repeating the process of classifying from scratch.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 60 of 65

1.5.3.6 SELECTING TIERS

The Reuse Engineer can easily set the “Tier” for a component from the main dialog of the Knowledge
Manager.

1. From the components tab located in the main dialog of the Knowledge Manager select the
component (usually located under the “ Unknown” group).

2. Right-click to the component.
3. From the pop-up menu that appears choose “Change Tier”.

4. The “Select Tier” dialog appears. Choose the appropriate tier and click to the “OK” button.

M select Tier k

Select the new Tier

Enterprise v

€ Cancel </ OK
Figure 61 — Select tier dialog
The tier was successfully changed.

1.5.4 SYNCHRONIZING WITH COMPARE REPOSITORY

Once the reuse engineer has finished the characterization and classification for one or more of the
generated components he can synchronize those changes with the COMPARE repository.

1. Click on the phrase “The semantic repository is not synchronized with COMPARE. Click here to
synchronize” located in the bottom of the Knowledge Manager. The synchronization dialog appears.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 61 of 65

Components | Business Components | Languages/Technologies | Architectural Patterns | Quality Attributes | % Open Component Classification Console

v @ Components

N . ~Classification Detail]
» #5 Enterprise <
& SWN: Save
M K_RQSOUFCE ' L save | MetaModel: |Accounting
>]Account|
> & User Domain: |Bank account
» & Workspace Version: |1 [
_Unknown Concepts
Account
License: |GPL b |
Language: |JAVA | = Technology: |J25E| =

@ Synchronization
Description

UMoney Account class i

synchronizing... Please wait ouble or split.
Account originates fron ney/)
| H Save |
rUses Component
| Q) select | @ Remove
| MName || Version || Tier

The semantic repository is not synchrogized with COMPARE. Click here to synchronize

Figure 62 — Synchronization process between COPE and COMPARE

If no errors occur, the following dialog appears informing the Reuse Engineer that the synchronization
was completed successfully.

@ synchronization

Synchronizing... Done!

|OK|

Figure 63 — Successful synchronization message

Also, the indication in Knowledge Manager’s main dialog changes to “The semantic repository is
synchronized with COMPARE”.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 62 of 65

Component Management Console

Components | Business Components | Languages/Technologies | Architectural Patterns | Quality Attributes | B Open Component Classification Console

* @cC £
& Cormponents ~Classification Detail

» #5 Enterprise
& SVIN: Save
M KIEESOUFCE ki MetaModel |Accounting
Wt
» & User o Domain: | Bank account
» £ Workspace Version: |1 ki ..
_Unknown Concepts
Account
License: |GPL ki ..
Language: |JAVA| + Technology: |J25E | «

Description
UMoney Account class is a model For accounts with entries. Entries can be regular, double or split.
Account originates from the JMoney project (http://sourceforge.net/projects/imoney/)

ki save

rUses Components

OSeIect %]

Name Version Tier

The semantic repository is synchronized with COMPARE

Figure 64 — Knowledge Manager’s main dialog after
the successful completion of the synchronization process

1.6 KNOWN ISSUES & WORKAROUNDS

In this section we provide some known issues and possible workarounds for the COPE platform. The
information is organized in subjects to make navigation easier and more efficient.

1.6.1 DOCUMENTATION GENERATION

Known Issue: When the .jar file of a F/LOSS project and the given source code are not identical (in
terms of files) malfunctions are likely to occur in the documentation generation process.

Workaround: Reuse Engineers are advised to manually produce the .jar file of the target F/LOSS
project by compiling its source code.

1.6.2 DYNAMIC ANALYSIS

1.6.2.1 COVERAGE

Known Issue: Methods that are not included in try blocks and throw exceptions, are not connected to
the end of the method in the control flow graph. Due to that, LCSAJ might be missing some paths

Known Issue: Break labels are not recognized, so they are treated as simple statements in cfg. Due to
that, LCSAJ might be missing some paths.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 63 of 65

Known Issue: Over-approximated connection is used in methods inside try-block (meaning that every
method call is connected to a catch statement). This might lead in generation of infeasible paths in
LCSAJ

Known lIssue: Ternary operators are not recognized, they are treated as simple statements. Due to that
LCSAJ might be missing some paths.

1.6.2.2 VALIDATION

Known Issue: Components using classes from “java.utils” package raise exceptions in validation
process.

Known Issue: Components generating huge state traces files (~3.000.000 lines) can’t pass the validation
process successfully yet (e.g. components reading / writing bytes of images).
1.6.3 COMPONENT MAKERS

Known Issue: When the .jar file of a F/LOSS project and the given source code are not identical (in
terms of files) malfunctions are likely to occur in the component making process (regardless of the
component maker used).

Workaround: Reuse Engineers are advised to manually produce the .jar file of the target F/LOSS
project by compiling its source code.

OPEN-SME Project http://opensme.eu

COPE User Guide Page 64 of 65

2. REFERENCES

1. E. Gamma, R. Helm, R. Johnson, kot J. M. Vlissides: “Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison-Wesley Professional, 1994.

2. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier and John Irwin: “Aspect-oriented programming”, 11th European Conference on Object-
Oriented Programming (ECOOP’97), LNCS vol. 1241/1997, pp. 220-242, Springer, 1997.

3. P.Herzum and O. Sims: “Business Component Factory : A Comprehensive Overview of
Component-Based Development for the Enterprise”, Wiley, 1999.

4. J. Long: “Software reuse antipatterns”, SIGSOFT Softw. Eng. Notes, vol. 26, no. 4, pp. 68-76,

2001.

OPEN-SME Project http://opensme.eu

