

Fig. 1. General structure of our proposed system.

Moving Object Detection in Traffic Videos using

Motion Vectors

Georgios Bardas, Stergios Poularakis and Ioannis Katsavounidis

Department of Electrical and Computer Engineering

University of Thessaly

Greece

Abstract— In this work, we propose a novel approach for

detection and tracking of moving objects in 2D video sequences,

based on Motion Estimation. Our method modifies Connected

Component Analysis, grouping image macroblocks based on both

spatial and motion characteristics. Computational efficiency is

achieved using fast motion estimation techniques as well as

additional optimization techniques on the configurable Tensilica

Xtensa processor core.

Keywords— object detection; tracking; motion vectors

I. INTRODUCTION

Recently, automatic traffic surveillance became an active
area in Computer Vision, including applications such as traffic
statistics extraction, law violations detection and car accident
spotting. Current solutions use background subtraction or
frame difference for a rough vehicle detection and then refine
the first segmentation result based on prior or learnt
knowledge about vehicle's characteristics, such as shape and
size. Another core element of such systems is vehicle tracking,
i.e. constructing vehicle's trajectory over consecutive video
frames.

In this work, we propose a novel approach for detection
and tracking of moving objects in 2D video sequences, based
on fast motion estimation techniques [1]. These methods
describe motion characteristics (direction and magnitude) of
small image parts (macroblocks) using motion vectors.
Subsequently, a modified Connected Component Analysis
(CCA) method labels similarly-moving neighbouring
macroblocks as belonging to the same object. Besides standard
computer implementation, we also experimented with the
configurable Tensilica Xtensa processor core, which resulted
into significant computational improvement.

The remaining of this paper is organized as follows. In
Sec. II we provide a short overview of some recent
approaches. In Sec. III we present in detail our approach for
object detection and tracking while in Sec. IV we present our
performance optimization procedure and experimental results.
Finally, Sec. V concludes this paper and addresses our plans
for future work.

II. RELATED WORK

Recently, Kostia [2] detected vehicles during night-time by
finding vehicle headlights and tracked them using a Kalman
filter. In a similar work, Chen, Wu, Huang and Fan [3]
detected both headlights and taillights, achieving real-time
performance on a TI DM642 DSP-based embedded platform.
Kafai and Bhanu [4] used background subtraction to detect
vehicles and then recognized vehicle's type (Sedan, Pickup
truck, SUV/Minivan and unknown), based on Hybrid Dynamic
Bayesian Networks. Liu, Lu and Xu [5] determined the best
vehicle detection frame by finding abrupt intensity changes on
video frames, which resulted in traffic-scene-invariance. Zhou,
Gao and Zhang [6] performed adaptive background
subtraction and then classified the macroblocks of significant
luminance change as vehicle or not vehicle parts, using
Support Vector Machines (SVMs). Pan, Guo and Men [7]
combined background subtraction and edge information to
detect the road lanes, which allowed for easier vehicle
counting. Li et al. [8] detected vehicle-parts through template
matching and then used a part-based model for the final
vehicle detection.

III. OUR APPROACH

The general structure of our approach is shown in Fig. 1.
Below we explain in detail all four components of our system.

A. Motion Estimation

Our method begins by splitting the video frames into
smaller blocks of size p x p, better known as macroblocks. A
very important property of most videos is that a macroblock at
frame n (current frame) and position (x,y) will most probably
be very similar to a macroblock at frame n-1 (reference frame)
and position (x - Δx, y - Δy), where Δx, Δy represent a small
translation. Thus, we can define the motion vector of a
macroblock as:

 v = (Δx, Δy) (1)

Fig. 2. The small and big diamond patterns used in PMVFASTalgorithm
[1]. Black circles denote the points where SAD will be computed.

Fig. 3. 16x16 SAD computation based on four 8x8 SADs.

Fig. 4. Distribution of residual variances for the ten VQEG videos [13].

Although there can be many possible motion vectors for
each macroblock, one usually keeps only the one minimizing
the Sum of Absolute Differences (SAD):

SAD(Δx, Δy) =

∑x=0:p-1 ∑y=0:p-1 ||curr(x,y) - ref(x - Δx, y - Δy)|| (2)

where curr and ref denote the current and reference frames
respectively.

Since exhaustive evaluation of SAD for all possible
translations (Full Search) is computationally expensive, we
decided to use Predictive Motion Vector Field Adaptive
Search Technique (PMVFAST) of Tourapis, Au and Liou [1],
which finds a very good solution (although sometimes not the
best) at a reasonable time. Inspired from the Diamond Search
(DS) algorithm [9], PMVFAST searches specific points in a
diamond-shaped area (Fig. 2) and moves towards the direction
of current minimum SAD, until the minimum is found in the
center. Moreover, PMVFAST uses some heuristics to end the
search process earlier than DS, while it also supports two
diamond patterns, one big and one small (Fig. 2), which result
in a better, i.e. lower SAD solution, in less operations. In our
implementation, we further improved computational
performance through Intel's SSE intrinsics [10], which allow
for Single Instruction, Multiple Data (SIMD) computations on
massively stored data, such as images and videos.

B. Macroblock splitting

The exact number of macroblocks at each frame depends
on parameter p. In our approach, we used p=16, which is a
typical choice in most popular video compression standards,
such as MPEG2 [11] and H.264 [12]. However, a fixed-p
analysis can only offer a rough view of the true motion field
and moving objects. For example, a 16x16 macroblock may
contain one moving object along with some static background,
or even two distinct moving objects. For such reasons, we split
some macroblocks to four smaller 8x8 sub-macroblocks,
based on specific criteria, and recompute their motion vectors
(Fig. 3).

The first criterion splits a macroblock if there exists a wide
range in the values of the four partial SADs, corresponding to
the 4 quadrants, as shown on Fig. 3 (e.g. if S1 = 4 S3).

The second criterion examines macroblock's residual,
defined as the difference between current and reference
macroblock. Intuitively, we can expect that the residual of a
double-object macroblock will present high variance σ

2
 in its

values, since the two objects contribute values of different
ranges. Thus, we split only the macroblocks whose variance
exceeds a predefined threshold Tσ. More specifically, we ran
PMVFAST on 10 widely used videos from the Video Quality
Experts Group (VQEG) collection [13] and chose Tσ = μ + 3σ,
where (μ=6, σ=4) denote the mean and standard deviation of
the variances distribution, as shown in Fig. [4]. In our
experiments we noticed that combining the two criteria
performed better than applying them separately. One can
repeat this process to smaller-sized blocks, such as 4x4, or
even 2x2 blocks. In our work, we limited the smallest block to
be 4x4.

C. Connected Component Analysis

This step merges neighbouring macroblocks to form
connected components corresponding to moving objects. Two
neighbouring macroblocks Mz, Mw with motion vectors z,w
are merged if D(z, w) Tv, where

 D(z, w) = ||zx - wx|| + ||zy - wy|| (3)
and Tv is a small threshold. In our experiments, we used
Tv = 10. Finally, we ignored small noisy objects that have a
small number of pixels, for example those consisting of less
than 10 small, i.e. 4x4, blocks.

A standard morphological filter, such as dilation, is
performed to smooth-out resulting objects and close apparent
"holes" in the moving object.

D. Object Tracking

According to Hu, Tan, Wang and Maybank [14], "The goal
of object tracking is to determine the position of the object in
images continuously and reliably against dynamic scenes"
[15]. Tracking typically outputs the object's trajectory through
time, which allows for basic or advanced inference in traffic
videos, such as checking for red-light violations, speed control
[16] and detection of dangerous driving attitude.

In this work, we use a simple and efficient tracking
method, which associates two objects of consecutive frames
current and future) based on their spatial proximity and
motion similarity. The top K candidate future objects are
further evaluated and we choose the object maximizing the
overlap with current object. This process is repeated for all
objects of the current frame.

 (a) (b)

Fig. 5. (a) A frame from a traffic video, showing a car moving towards the
camera. (b) The moving objects found by our approach, shown in different

colors.

 (a) (b)

Fig. 6. (a) A car detected in a traffic video. Note the macroblocks of zero

motion vector on the object’s surface. (b) Correction by painting the whole
car as a rigid object through morphological dilation.

IV. IMPLEMENTATION

For our experiments, we performed parameter estimation
using the ten VQEG videos [13], and tested our system on
various traffic videos downloaded from YouTube. We
implemented and optimized our approach both on a standard
PC system and a Tensilica Xtensa processor core, as explained
in sections IV-A and IV-B respectively.

A. Optimization on a standard PC system

We implemented our approach in C/C++ using Microsoft
Visual Studio

TM
 2010, executing on a standard PC system.

Choosing PMVFAST for Motion estimation is known to
provide a computational speed-up of 100x up to 2000x over
Full Search, depending on the video characteristics [1]. In our
implementation, we noticed a speed-up of around 120x for
traffic videos. An additional improvement of 4x4 was
achieved using Intel's SSE2 intrinsics, which support fast
vector operations. Specifically, we split a 16x16 macroblock
to four 8x8 sub-macroblocks, as shown in Fig. 3, compute the
partial SADs using the _mm_sad_epu8 intrinsic [17], and
combine the four SADs into the final SAD.

B. Optimization on Tensilica Xtensa

We further optimized our implementation on Tensilica
Xtensa

 TM
, "a configurable, extensible and synthesizable

processor core for embedded System-On-Chip (SoC), focusing
on design through the processor and not through hardwired
RTL" [18]. Typical development procedure on Tensilica
Xtensa processor involves optimizing software and hardware
repeatedly, until a target goal is achieved, as shown in Fig. 7.
Using Tensilica Instruction Extension (TIE) language, a
developer can define new CPU instructions (TIEs) and use
them directly in software as built-in functions, usually for the
most elaborate tasks (Hotspots). Computational improvement
comes from three main optimization techniques [19]:

 Fusion. Multiple processing operations can be fused
into one instruction, e.g. addition and shift to the right,
required when computing the average of two integers.

 SIMD/Vector Transformation. Similar to Intel's SSE,
one can define TIEs that perform the same processing
operation on multiple data of same type (Single
Instruction - Multiple Data). Such optimizations are
very frequent in image and video processing, where
pixels are conveniently aligned in continuous memory
addresses.

 FLIX. Flexible Length Instruction Xtensions (FLIX)
allows designer to merge multiple unrelated operations
in one instruction, thus offering great flexibility.

In this work, we used TIEs to speed-up the following
tasks:

 SAD. Computing SAD between two numbers requires
4 clock cycles on a standard implementation (1 fetch, 1
addition, 1 subtraction and 1 absolute value), i.e. 4 x
256 = 1024 clock cycles for two 16x16 macroblocks.
Using SIMD, we computed the SAD between two lines
of 16 pixels simultaneously, which required 4 x 16 =
256 clock cycles (16 fetch, 1 additions, 1 subtractions
and 16 absolute values). Finally, using FLIX, we
combined fetch, addition, subtraction and absolute
value in one TIE, which required 16 clock cycles and
resulted in a total improvement of 1024/16 = 64x.
Multiple processing operations can be fused into one
instruction, e.g. addition and shift to the right, required
when computing the average of two integers.

 Residual between 16x16 macroblocks. This
computation requires initially 512 memory loads, 256
subtractions and 256 memory stores, i.e. 1024 cycles.
Using SIMD and FLIX, we achieved 32x speed-up.

 Variance of residual values. Using similar
optimizations, we achieved 46x speed-up.

V. DISCUSSION AND FUTURE WORK

In this work we proposed a novel approach for object
detection and tracking on traffic videos. Our method performs
fast Motion Estimation techniques (PMVFAST) and then
combines neighbouring image macroblocks based on their
spatial and motion features. We thoroughly optimized the
execution performance of our approach, both on a standard PC
system, using SIMD and PMVFAST, as well as on a Tensilica
Xtensa configurable processor core, achieving real-time
performances. Our goals for future work include extensive
experiments on standard Computer Vision datasets, as well as
further improvements of detection and tracking accuracies.

ACKNOWLEDGMENT

This research has been co-financed by the European Union

(European Social Fund – ESF) and Greek national funds

through the Operational Program "Education and Lifelong

Learning" of the National Strategic Reference Framework

(NSRF) - Research Funding Program: ARCHIMEDES III.

Investing in knowledge society through the European Social

Fund.

REFERENCES

[1] A. M. Tourapis, O. C. Au, and M. L. Liou, “Predictive Motion Vector
Field Adaptive Search Technique (PMVFAST) – enhancing block based
motion estimation,” in SPIE Conf. Visual Communications and Image
Processing, pp. 883–892, 2001.

[2] R. Kostia, “Night-time traffic surveillance: A robust framework for
multi-vehicle detection, classification and tracking,” in 6th IEEE Int’l
Conf. on Advanced Video and Signal Based Surveillance, pp. 1–6, 2009.

[3] Y. L. Chen, B. F. Wu, H. Y. Huang, and C. J. Fan, “A real-time vision
system for nighttime vehicle detection and traffic surveillance,” IEEE
Trans. on Industrial Electronics, vol. 58, no. 5, pp. 2030–2044, 2011.

[4] M. Kafai and B. Bhanu, “Dynamic bayesian networks for vehicle
classification in video,” IEEE Trans. on Industrial Informatics, vol. 8,
no. 1, pp. 100–109, 2012.

[5] Yan Liu, Xiaoqing Lu, and Jianbo Xu, “Traffic scenes invariant vehicle
detection,” in 9th Asian Control Conf. (ASCC), pp. 1–6, 2013.

[6] J. Zhou, D. Gao, and D. Zhang, “Moving vehicle detection for automatic
traffic monitoring,” IEEE Trans. on Vehicular Technology, vol. 56, no.
1, pp. 51–59, 2007.

[7] X. Pan, Y. Guo, and A. Men, “Traffic surveillance system for vehicle
flow detection,” in 2nd Int’l Conf. on Computer Modeling and
Simulation, vol. 1, pp. 314–318, 2010.

[8] Y. Li, B. Tian, B. Li, G. Xiong, F. Zhu, and K. Wang, “Vehicle
detection with a part-based model for complex traffic conditions,” in
IEEE Int’l Conf. on Vehicular Electronics and Safety (ICVES), pp. 110–
113, 2013.

[9] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Trans. on Image Processing, vol. 9,
no. 2, pp. 287–290, 2000.

[10] Intel Corporation, “Intel 64 and ia-32 architectures software developers
manual,” September 2013,

http://www.intel.com/content/dam/www/public/us/en/documents/manual
s/64-ia-32-architectures-softwaredeveloper-manual-325462.pdf.

[11] ISO/IEC JTC1/SC29/WG11 13818, “Information technology-generic
coding of moving pictures and associated audio,” Nov. 1994.

[12] Rec. ITU-T H.264 ISO/IEC 14496-10, “Advanced video coding for
generic audiovisual services,” June 2011.

[13] “Video Quality Experts Group (VQEG) YUV sequences,”
http://www.vqeg.org/.

[14] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual
surveillance of object motion and behaviors,” IEEE Trans. on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 34, no. 3,
pp. 334–352, 2004.

[15] H. Zhou, Y. Yuan, and C. Shi, “Object tracking using SIFT features and
mean shift,” Computer Vision and Image Understanding, vol. 113, no. 3,
pp. 345 – 352, 2009.

[16] “A real-time computer vision system for vehicle tracking and traffic
surveillance,” Transportation Research Part C: Emerging Technologies,
vol. 6, no. 4, pp. 271 – 288, 1998.

[17] “Microsoft MSDN,” http://msdn.microsoft.com.“Microsoft MSDN,”
http://msdn.microsoft.com.

[18] Tensilica, “Xtensa LX - Product Brief,” http://www.tensilica.com.

[19] Tensilica, “Xtensa LX Microprocessor - Overview Handbook,” 2004,
http://www.tensilica.com.

