
The SPRINT-SMEs Approach for Software Process

Improvement in Small-Medium sized Software

Development Enterprises

Vassilis Gerogiannis
1
 , George Kakarontzas

2
, Leonidas

Anthopoulos
1

TEI of Thessaly

 (1) Dept. of Business Administration

(2) Dept. of Computer Science & Engineering

Larissa, Greece

{gerogian, gkakaron, lanthopo}@teilar.gr

Stamatia Bibi, Ioannis Stamelos

Aristotle University of Thessaloniki

Department of Informatics

Thessaloniki, Greece

{sbibi,stamelos} @csd.auth.gr

Abstract—Software Process Improvement (SPI) of Small

Medium Enterprises (SMEs) is gaining momentum in software

research and industry. It is recognized that in most countries

software industry is composed of a scheme made up mainly of

SMEs. This paper condenses efficient Software Engineering

practices that will help a SME make tangible improvements in

finite time. A practical and easily applied mechanism for SPI is

suggested tailored in the needs, size and type of each SME. The

main concept of this process involves creating a knowledge base

that consists of information about three distinct improvement

areas: experience, process and product area. This knowledge

base is formed as an ontology that will provide further inference

knowledge on the interrelationships of the information recorded.

Such knowledge is exploited to define problematic areas and test

alternative improvement solutions.

Keywords—software process improvement; Small Medium

Enterprises; software engineering ;software requirements; software

reuse; software estimation

I. INTRODUCTION

Software Process Improvement (SPI) of Small Medium
Enterprises (SMEs) is gaining momentum in software research
and industry. The SPI process is a challenging process for
most SMEs aiming at preventing project failures and
delivering high quality software products consistent with end-
customers’ needs.

The objective of SRPINT-SMEs approach (Research in
Software PRocess ImprovemeNT Methodologies for Small &
Medium sized Software Development Enterprises) is to
propose and develop a practical framework for the
improvement of software processes which take place in Small
& Medium sized Software Development Enterprises (SW
SMEs). The framework emphasizes process assessment and
improvement practices to be adopted by software SMEs in
order to increase their competitiveness. The framework
concentrates on improving selected process domains such as
the Requirements Engineering process (RE) and Project
Planning. The following stages of a SPRINT-SME approach
will be supported by the framework’s analysis methods:

 (i) Assessment of software process domains and selection
of defective ones for further analysis and improvement

(ii) Definition of a knowledge base that better describes the
software domain under improvement

(iii) Creation and further analysis of the ontology that
represents the domain

(iv) Experimentation and suggestions for improvement

The framework will be particularly useful for software
SMEs interested in implementing lightweight and flexible SPI
projects based on critical improvement issues, tailored in
cost/time/resource constraints and consistent with their
individual needs.

In this paper in Section II we will point out the problems
of traditional SPI methodologies when applied to SMEs and
resume the SPI Initiatives for SMEs. In Section III we will
present the four step analytical SPRINT- SME approach for
software process improvement. In Section IV we will present
a simple example of its application in improving the domain
of Project Planning. Finally we conclude the paper and present
ideas for future work.

II. SOFTWARE PROCESS IMPROVEMENT

INITIATIVES

In general, software process improvement (SPI)
approaches are either inductive (bottom-up) or prescriptive
(top-down) [1]. On the one hand, inductive approaches, such
as the Basili’s Quality Improvement Paradigm [2], start by
identifying and understanding the most critical processes in a
software organization which are required to be improved.
Improvement goals are, consequently, set and the process
improvement is realized by a pilot project. However, inductive
approaches have been criticized that they are applicable only
when the organization processes are characterized by an
adequate level of maturity [3]. One the other hand,
prescriptive approaches, such as the Capability Maturity
Model Integration (CMMI) [4] and ISO/IEC 15504 (also
known as SPICE) [5], follow the “one size fits all” paradigm.

They define sets of best practices (Key Process Areas) which
are required to be evaluated, regardless the characteristics or
the needs of an individual software organization under
assessment. A prescriptive approach supports the
benchmarking of an organization’s processes against these
practices. A typical software process assessment/improvement
project according to a prescriptive approach often demands
large amount of resources and investment costs. For example,
it can last between 18 to 24 months [6] and, thus, the SPI
project imposes time and resource constraints which are
difficult to be met by a small or a medium sized SW
enterprise.

To address the above problems, in the relevant literature,
the so called “lightweight” SPI approaches have been
proposed [1,7]. A lightweight approach does not require
extensive resources to be deployed in the SPI project and
allows the flexible consideration of certain process areas
which are the most critical for a specific organization (e.g.
Project Management, Requirements Engineering, Testing,
etc.).

However, a practical problem that remains open in most
SPI approaches is that their application focuses mainly on
providing answers on “what a software company should
perform in order to improve its processes” and not on “how a
software process improvement project will be conducted” [6].
To get answers in the second question the relevant literature
proposes a number of process modeling approaches and
process analysis/assessment techniques. The objective of a
process modeling approach [e.g., 8, 9] is, first of all, to get an
understanding of the current (as-is) process and then to
propose a process redesign (to-be process) that will be more
effective and efficient than the current one. The aim of
analysis/assessment techniques is to perform
measurements/estimations for the budget, time, scope and
resource requirements of the SPI project and analyze the
project results (success factors [12]) with respect to the initial
project objectives [10, 11].

The SPINT-SMEs approach takes into consideration the
needs of SMEs and proposes a lightweight, easily applied
framework to help a SME improve domains of its process
[13,14].

III. A RIGOROUS METHOD FOR SPRINT-SMES

In this section, we will introduce the SPRINT- SMEs
approach for the Improvement of the Software Process of a
Small Medium Company. The SPRINT- SMEs approach is a
lightweight yet rigorous methodology for efficiently
improving certain process domains of SMEs. In section II we
have stated the specificity of SPI in SMEs and their difficulty
to follow models such as CMMI or SPICE. Our approach is
tailored to the needs of SMEs as it is efficient, easily
adoptable, non bureaucratic and independent of company
specific assets.

We suggest a four step process improvement model that
consists of the following steps:

1. Select domain for SPI. Definition of the particular
software development domain that needs improvement.

2. Define a SPI knowledge base. Selection of attributes that
describe the particular domain and definition of metrics
that better represent these attributes.

3. Ontology analysis. Form an ontology that describes better
the relationships among the attributes of the SPI
knowledge base. Application of tools and methods to
better analyze an ontology that is feeded with data
coming from the SME.

4. Experimentation and improvements. Exploit the results
of the previous step to find problematic and defective
domain areas. Make changes, experiment and suggest
improvements.

A. Define the Domain of Improvement

The first step of the SPRINT-SMEs approach is to define
the defective domain that will be investigated. The domain
identified will then be set as the target of the improvement
efforts. The starting point of popular SPI models is the
specification and improvement of the quality of the total
development process.

An objectively measurable specification of software
process quality is a prerequisite for such types of models.
However, the definition of software process quality is not
always the same and does not apply to all types of companies.
Additionally, the effort required to improve all aspects of
software process is often prohibitive in terms of time and cost
for most SMEs since they do not possess neither the know-
how nor the resources to achieve such improvement goals.

Defining the software process domain that will be set
under observation is a managerial decision and depends on the
needs of the SME and the type of projects that it handles. For
example, the domain under improvement can be decided from
the traditional software lifecycle models: requirements
engineering, design specification, programming and
development, software testing, software development
management etc.

The selection of one or more of these domains for process
improvement will then define the company specific aspects
that need to be specified to continue with the SPINT-SMEs
approach. Some of the domains of improvement that the
SPINT-SMEs approach focuses are:

 Requirements Engineering

 Software Process Estimation

 Software Project Quality

 Personnel Management

B. Create a SPI Knowledge Base

 Target of this step is to specify and design a Knowledge
Base that consists of information relevant to the knowledge
required for Software Process Improvement procedures of the
domain (s) pointed by the previous step. A knowledge base
[17] is a database that stores data for knowledge management.
Knowledge management (KM) [18, 19] comprises a range of
strategies and practices used in an organisation to identify,

create, represent, distribute, and enable adoption of insights
and experiences. Such insights and experiences comprise
knowledge, either embodied in individuals or embedded in
organisations, such as processes or practices [20].

 Knowledge bases are commonly used to complement a
procedure for sharing information among members of a
community. They might store critical enterprise data,
personnel information, process metadata, troubleshooting
information, knowledge tags, or answers to frequently asked
questions. Typically, a search engine is used to locate
information in the system, or users may browse through a
classification scheme.

 Using a KM approach, knowledge created during software
process can be captured, stored, disseminated and reused, so
that better quality and productivity can be achieved. KM can
be used to better support management activities, such as
software process definition, people allocation and estimation,
software development activities, such as requirement analysis
and test case design, and quality assurance activities, such
quality planning and control.

C. Ontology Analysis

In order to design the structure of the SPRINT-SMEs
Knowledge Base we follow an ontology-based approach. In
computer and information science, an ontology formally
represents knowledge as a set of concepts within a domain,
using a shared vocabulary to denote the types, properties and
interrelationships of those concepts [21], [22].

Ontologies are structural frameworks for organizing
information and they are used in artificial intelligence,
Semantic Web, systems engineering, software engineering,
biomedical informatics, library science, enterprise
bookmarking, and information architecture as a form of
knowledge representation about the “world” of interest or
some part of it. The creation of domain ontologies is also
fundamental to the definition and use of an enterprise
architecture framework [22].

Different complementary ontologies have to be developed
to address the full spectrum of knowledge in SW process
improvement projects (i.e., tacit and explicit knowledge,
knowledge about projects, knowledge in projects and
knowledge from projects). The SPRINT-SMEs approach
suggests three sub-ontologies covering three distinct process
improvement knowledge domains:

 Experience ontology: The experience ontology describes
skills and qualifications required for performing specific
improvement practices.

 Process ontology: The process ontology enables defining
a hierarchical process type structure and alternative
process decompositions and dependencies (for example,
it is possible to state that “Requirements Traceability” is
dependent on “Requirements Specification”).

 Project content ontology: The project ontology supports
the representation of information about the improvement
of the project content which includes project artifacts
(e.g. source code, UML diagrams etc.) and the project

content in general. Examples are: “no of class diagrams =
40”, “number of use cases in the use case model = 30”,
“persistence framework = Hibernate” etc.

D. Experiment and Improve.

In this step we suggest the use of formal notations and
tools to represent and experiment with the ontologies defined
in the previous step of the approach. Some of the methods that
can be used are: (i) UML for ontology representation which is
a well-known standard in the software development
community, (ii) clear and rigorous semantics provided by the
definition of a metamodel itself, and (ii) use of tools for the
generation and verification of the SPRINT-SMEs models.
Especially the use of tools alleviates the difficulty of process
description verbosity. For example, a human role or a phase in
a process is described once and the same definition is reused,
whenever the description of the same role/phase is required.

Tools and methods that can be used to further analyse and
experiment with the ontology can come from the traditional
group of CASE tools (such as process framework tools,
simulation tools, etc.) or can be tools that provide an
estimation and inference mechanism (such as probabilistic
techniques, fuzzy logic based techniques, Social Network
analysis tools, etc.). The SPRINT- SMEs approach, for
example, focuses, among others, on two representation tools a)
the open source Eclipse Process Framework (EPF) Composer
and b) the Bayesian Networks Analysis tools.

In particular, a tool that provides the above mentioned
capabilities is the open source Eclipse Process Framework
(EPF) Composer. EPF Composer includes the following
advantageous features to be exploited by the SPRINT-SMEs
approach: (i) A Method Content Authoring Feature, to define
process roles, tasks, work products and guidances,
independently from the process definition, a feature which
makes these method ingredients reusable throughout the
process description. (ii) A Process Authoring feature, to
describe processes as sequences of tasks (performed by roles)
which produce work products. (iii) A Process Configuration
Feature, for incorporating the process descriptions into
packages (plugins) to be re-utilized in the definition of other
processes. This functionality allows the customisation of
processes to particular contexts and it very important since a
SW development company may follow similar but slightly
different methods and processes.

On the other hand, SPRINT-SMes exploits the advantages
from powerful estimation techniques such as the Bayesian
Belief Networks (BBNs) [15]. BBNs can be helpful since they
can provide: i) a way to represent project/process attributes
and identify their interrelationships, ii) capabilities for
multiple attribute estimations, iii) results indicating confidence
of the estimation, iv) solutions that can be easily interpreted
and confirmed by intuition, and v) a formal method that can be
used alone or combined with expert judgment. A methodology
that can be used with the support of Bayesian Network
Analysis Tools consists of three phases, namely [41]: i)
metrics collection of the current ontology, ii) selection,
application and evaluation models expressed in BBN terms,
and ii) specification of a new improved process.

IV. AN ILLUSTRATIVE EXAMPLE

In this section we will present a simple application of the
SPRINT- SME approach. We apply the four step methodology
in order to verify the applicability of the proposed approach.

The first step of the approach involves the identification of
the domain under improvement. We isolated project planning
phase as the target of the improvement attempts. We selected
to use this domain in our example as it is pointed out to be a
very defective task that cannot be easily performed in SMEs.
During project planning the project process need to be defined
along with the schedule and its activities. People to perform
the project activities have to be allocated. Also project
monitoring and control should be performed. This involves
tracking the accomplishment of the activities and managing
the necessary time to perform them. Software project planning
involves activities such as:

 Project process selection: This might involve the selection
of standard processes such as RUP, SCRUM, ICONIX or
even hybrid methods that fit the particular needs of the
company.

 Resource allocation: This task involves the selection of the
development team, the allocation of people to tasks. Also
in this task the selection of the necessary software tools
and hardware equipments is performed.

 Project monitoring and controlling: Usually involves the
necessary estimations relevant to the effort or
productivity required to complete the project.

The next step in the SPRINT-SMEs approach is to define a
knowledge base relevant to the domain under improvement. In
order to create such a knowledge base, an SME is advised to
use each own empirical data coming from historical projects.
In case such data are not available we suggest the use of
publicly available data such as those coming from ISBSG

1
.

In the generic example we use metrics and data coming
from ISBSG database. It is highly possible that a company that
wants to estimate several aspects of software development will
not possess a sufficient quantity of its own data. Therefore,
using cross company data is a starting point in order to
manage and estimate a software development process.
Additionally, cross company data can be useful when a
company is adopting a new technology and lacks experience.
Cross company data may contain projects utilizing the
particular technology and can provide support on estimation
and implementation issues. Table 1 summarizes some of the
metrics that can be used to form the project planning
knowledge base.

The third step of the SPRINT- SMEs approach involves
the identification of an ontology relevant to the project
planning phase. The Software Process Ontology (SPO)
originally developed in [23] was built aiming at establishing a
common conceptualization for software organizations to
“talk” about software processes. It was divided into four sub-
ontologies, namely: activity, resource, procedure and software
process ontologies. Figure 1 shows a fragment of the first

1
 http://www.isbsg.org/

version of this ontology that includes concepts from the
activity, resource, and software process sub-ontologies. We
chose this fragment, because we are interested in the portion
of the SPO conceptualization that is more relevant for project
planning.

TABLE I. METRICS IN THE PROJECT PLANNING KNOWLEDGE BASE

Metric Possible Values

Function Points Continuous values

Max team size Continuous values

Development
Type

NewDevelopment ,Re-development, Enhancement

Language Type

3GL, 4GL, ApG

Primary

Programming

Language

ApG, 4GL, ACCESS, C, C++, CLIPPER, COBOL, CSP,

EASYTRIEVE, JAVA, NATURAL, ORACLE

OTHER, PERIPHONICS, PL/I, POWERBUILDER, SQL,

TELON, VISUAL BASIC

Organisation

Type

Aerospace/Automotive,
Banking, Communication, Community.Services,

Computers, Electricity,Gas,Water, Financial.Business,

Government, Insurance, Manufacturing, OTHER,
Professional Services, PublicAdministration,

Transport&Storage, Wholesale&Retail Trade, Defence,

Electronics.

Database

Management

System

ACCESS, ADABAS, DB2 ,IMS, OBJECTSTOR,

ORACLE, OTHER

Development

Platform

MF, MR, PC

How

Methodolgy

Acquired

Developed/purchased, Developed Inhouse, Purchased

Application

Type

DSS, Elect.Data.Interch., Executive.I.S, MIS, Network.M,

Office.I.S, OTHER, Process.Control, Real-time,

Transaction/Production

Business
Area Type

Accounting, Banking, Engineering, Financial,

FineEnforcement, Insurance, Inventory, Legal, Logistics,
Manufacturing, OTHER, Personnel,

Research&Development, Sales&Marketing,

Telecommunications

Implementation
Date

1989- 2001

Fig. 1. Software process ontology [23].

 The ontology of figure 1 describes the procedure to define
a software process for a project. The project manager should
identify the activities that have to be performed in order to

achieve the project goals. This is done by tailoring
organizational standard processes, taking the project
particularities and team features into account. The project
process is the basis for the further project management
activities. After defining the process, the project manager has
to create a network of activities, define how long each activity
will last, and allocate people to perform it. For a good
understanding of these tasks, we need a shared
conceptualization regarding software processes.

Based on the ontology presented in figure 1 we use
Bayesian Networks in order to experiment with the data
represented in the ontology and find useful relationships
among them to gain insights about how the project planning
process can be improved. For this reason, we replace each
class defined in the UML diagram of figure 1 by the
appropriate metrics of table 1 or use complementary metrics if
needed.

The node software process can be accumulated by
software metrics relevant to the effort required to complete a
software project. These can be the effort, the software size, the
lines of code. The node Standard Process can be represented
with the metrics that show conformance to RUP, ICONIX or
XP process models while the node Project Process can
represent the use of a customized variation of these standard
processes for a specific project. The node Organization can be
represented by metrics describing the SME. Such metrics may
include the size of the organization, the years of experience,
the organization type. The node Project can be identified with
project specific metrics such as development type, business
area type, Web development. The Activity node can be
represented with the standard activities performed in software
development like Planning, Specification, Design, Build,
Implementation and Testing. Depending on what aspect of
project planning have to be improved, these nodes can
represent the relevant quality metrics for each activity or effort
metrics for each activity. The node Human Resources can be
represenetd with metrics like the team size, while the node
Software Resources can be represented by metrics such as Use
of Case Tools, Programming Language, Data Base. Finally,
the node Hardware can be replaced by metrics such as the
Development Platform and the Architecture type.

Figure 2 represents the Bayesian Network as it is formed
after the representations mentioned previously. This Bayes
Network can then be useful for applying inference. For
example, specific tools can be used to redefine the structure of
the network based on data from real projects. These data can
be further analyzed to create probability tables that show how
each node can affect the neighbor ones. Certain inferences can
be made to show how the change in the values of a metric can
affect the values of another metric and, finally, reach some
conclusions regarding good and bad practices in software
project planning.

V. CONCLUSIONS

This paper has presented in brief a rigorous approach to
systematically model and guide Software Process
Improvement for SMEs. The SPRINT- SMEs approach is
based on a four step assessment and improvement process of a

particular software process domain. The proposed
methodology takes into consideration the characteristics and
the needs of the individual software organization under
assessment and does not demand a large amount of resources
and investment costs.

As future work the proposed framework will be validated
at a multiple case study involving dynamic Greek SW SMEs,
which show a constant interest in redesigning and improving
their development practices. Thus, the SPRINT-SMEs project
will result in a set of best practices that will constitute a
publicly available guide for other SW SMEs interested in
gaining competitive advantages by changing their role from
bespoke to market-driven software product developers.

ACKNOWLEDGMENT

 This research has been co-financed by the European Union
(European Social Fund – ESF) and Greek national funds
through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework
(NSRF) - Research Funding Program: ARCHIMEDES III.
Investing in knowledge society through the European Social
Fund.

REFERENCES

[1] Pettersson, F., Ivarsson, M., Gorsheck, T., Ohman, P. (2008), A
Practitioner's Guide to Lightweight Software Process Assessment and
Improvement Planning. Journal of Systems and Software, 21(6): 972-
995.

[2] Basili, V.R. (1985), Quantitative Evaluation of Software Methodology,
University of Maryland, College Park, Maryland.

[3] Cattaneo, F., Fuggeta, A., Sciuto, D. (2001), Putting Coherence in
Software Process Assessment and Improvement. Software Process
Improvement and Practice, 6 (1): 3-22.

[4] CMMI (2002), Capability Maturity Model Integration (CMMI). CMMI
for Systems Engineering, Software Engineering, Integrated Product-
Process Development and Supplier Sourcing
(http://www.sei.cmu.edu/cmm/cmm.html).

[5] El Emam, K., Drouin, J. N., Melo, W. (1998), SPICE: The Theory and
Practice of Software Process Improvement and Capability
Determination. IEEE Press.

[6] Zahran, S. (1998), Software Process Improvement: Practical Guidelines
for Business Success. Addison-Wesley.

[7] Mishra,A., Mishra, D. (2006), Software Quality Assurance Models in
Small and Medium Organisations: a Comparison. International Journal
of Information Technology and Management, 5(1): 4-20.

[8] Software Process Engineering Metamodel (2005), www.omg.org.

[9] Kruchten. P. (2003) The Rational Unified Process: An Introduction (3nd
Edition), Addison-Wesley.

[10] Wiegers, K.E., Sturzenberger, D.C. (2000), A Modular Software Process
Mini-Assessment Method. IEEE Software 17(1):62-70.

[11] Richardson, I. (2002), SPI Models: What Characteristics are Required
for Small Software Development Companies? Software Quality Journal,
10(2): 1573-1367.

[12] Niazi, M., Wilson, D. , Zowghi, D. (2006), Critical Success Factors for
Software Process Improvement Implementation: An Empirical Study.
Software Process Improvement and Practice, 11(2):193–211.

[13] Gerogiannis, V. C. & Ipsilandis, P. G. (2007), Multi Objective Analysis
for Timeboxing Models of Software Development. Proceedings of the
2nd ICSOFT Conference (International Conference on Software and
Data Technologies), Barcelona, Spain, pp. 145-153.

[14] Gerogiannis, V. C., Kakarontzas, G., Stamelos, I. (2006), A Unified
Approach for Software Process Representation and Analysis.

Proceedings of the 1st ICSOFT Conference (International Conference on
Software and Data Technologies), Setubal, Portugal, pp.127-132.

[15] Settas, D., ,Bibi, S., Sfetsos, P., Stamelos, I., Gerogiannis, V.,C. (2006),
Using Bayesian Belief Networks to Model Software Project
Management Antipatterns. Proceedings of the Fourth International
Conference on Software Engineering, Research, Management and
Applications (SERA 2006), Seattle, Washington, USA, IEEE Press, pp.
117-124.

[16] Wieringa, R., Ebert, C. (2004), Guest Editors' Introduction: RE'03:
Practical Requirements Engineering Solutions. IEEE Software 21(2):16-
18.

[17] Guillermo Simari, Iyad Rahwan, Argumentation in Artificial
Intelligence, Springer, 2009.

[18] http://en.wikipedia.org/wiki/Knowledge_base

[19] Nonaka, Ikujiro (1991). "The knowledge creating company". Harvard
Business Review 69 (6): 96–104.

[20] Nonaka, Ikujiro; von Krogh, Georg (2009). "Tacit Knowledge and
Knowledge Conversion: Controversy and Advancement in
Organizational Knowledge Creation Theory". Organization Science 20
(3): 635–652. doi:10.1287/orsc.1080.0412

[21] Thomas R. (June 1993). "A translation approach to portable ontology
specifications". Knowledge Acquisition 5 (2): 199–220.

[22] Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou,
E.: Ontology Visualization Methods - A Survey. ACM Computing
Surveys, 39, 4, Article 10 (2007).

[23] Bringuente, A. C. O., Falbo, R. A., Guizzardi, G. (2011), “Using a
Foundational Ontology for Reengineering a Software Process
Ontology”. Journal of Information and Data Management, vol. 2, n. 3,
pp. 511-526.

Fig. 2. A Baysian Network for the Software process Ontology presented in Figure 1.

